
Big Data - Hadoop/MapReduce

Sambit Sahu
Credit to: Rohit Wagle and Juan Rodriguez

2

Agenda

! Why Big Data?

! Apache Hadoop
– Introduction
– Architecture
– Programming

Hypothetical Job

! You just got an awesome job at data-mining start-up ..
Congratulations !!

– Free Snacks, Soda and Coffee --- Yayy!!

! Your first day of work you are given a task

– The company has a new algorithm they want you to test.

– Your boss gives you

•  The algorithm library
•  A test machine and
•  1GB input data file

3

Java Document Scorer Program

4

Process Data

What if we wanted to process 10GB data set? 10hours!!
How can we improve the performance?

Read Input

Throughput 1GB per hour.

Some Options

1.  Faster CPU

2.  More Memory

3.  Increase the number of cores

4.  Increase the number of threads

5.  Increase the number of threads and cores

5

Java Document Scorer Program – Multi Threaded

6

Throughput 4GB per hour.

How long for 100GB?
What else can we do?

Source: MIT Open Courseware

Get An Even Faster Machine with more Cores?

Current Tools
"  Programming models

#  Shared memory (pthreads)
#  Message passing (MPI)

"  Design Patterns
#  Master-slaves
#  Producer-consumer flows
#  Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

master

slaves

producer consumer

producer consumer

work queue

Where the rubber meets the road
"  Concurrency is difficult to reason about

"  Concurrency is even more difficult to reason about
#  At the scale of datacenters (even across datacenters)
#  In the presence of failures
#  In terms of multiple interacting services

"  Not to mention debugging…

"  The reality:
#  Lots of one-off solutions, custom code
#  Write you own dedicated library, then program with it
#  Burden on the programmer to explicitly manage everything

What’s the common theme?
"  To improve performance, you have to re-write the code

"  The code has to adapt to the expected performance.
#  This doesn’t work since you may not know the amount of data

beforehand.

"  The actual Intellectual Property (IP) of the company is the
analytic algorithm
#  However a lot of effort is spent on scaling the analytic

11

Big Data - Motivation

! Google processes 20 PB a day (2008)

! Wayback Machine has 3 PB + 100 TB/month (3/2009)

! Facebook has 2.5 PB of user data + 15 TB/day (4/2009)

! eBay has 6.5 PB of user data + 50 TB/day (5/2009)

! CERN’s LHC will generate 15 PB a year

640K ought
to be enough
for anybody.

Enter .. Apache Hadoop

! Hadoop is a high-level Open Source project
– Under Apache Software Foundation
– Inspired by Google’s MapReduce and GFS papers

!  It contains several individual projects
– HDFS
– MapReduce
– Yarn

!  It also has a slew of related projects
– PIG
– HIVE
– Hbase

! Has been implemented for the most part in Java.

12

A closer look

Partition Work

Combine Results

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallelization Challenges
"  How do we assign work units to workers?

"  What if we have more work units than workers?

"  What if workers need to share partial results?

"  How do we aggregate partial results?

"  How do we know all the workers have finished?

"  What if workers die?

What is the common theme of all of these problems?

What’s the point?
"  It’s all about the right level of abstraction

#  The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

"  Hide system-level details from the developers
#  No more race conditions, lock contention, etc.

"  Separating the what from how
#  Developer specifies the computation that needs to be performed
#  Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

“Big Ideas”
"  Scale “out”, not “up”

#  Limits of SMP and large shared-memory machines

"  Move processing to the data
#  Cluster have limited bandwidth

"  Process data sequentially, avoid random access
#  Seeks are expensive, disk throughput is reasonable

"  Seamless scalability
#  From the mythical man-month to the tradable machine-hour

! Platform for distributed storage and computation
– HDFS
– MapReduce
– Ecosystem

18

Hadoop

Source: Hadoop in Practice, Alex Holmes, Manning Publications Co., 2012

What are we missing here?

Partition Work

Combine Results

Sequential File Read

19

! Platform for distributed storage and computation
– HDFS
– MapReduce
– Ecosystem

20

Hadoop

Source: Hadoop in Practice, Alex Holmes, Manning Publications Co., 2012

How do we get data to the workers?

Compute Nodes

NAS

SAN

What’s the problem here?

HDFS: Assumptions

! Commodity hardware over “exotic” hardware
– Scale “out”, not “up”

! High component failure rates
–  Inexpensive commodity components fail all the time

!  “Modest” number of huge files
– Multi-gigabyte files are common, if not encouraged

! Files are write-once, read many
– Perhaps concurrently

! Large streaming reads over random access
– High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 22

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

How HDFS works
"  When an input file is added to HDFS

#  File is split into smaller blocks of fixed size
#  Each block is replicated
#  Each replicated block is stored on a different host

"  Block size is configurable. Default is 128/256MB.

"  Replication level is configurable. Default is 3
#  Replication is necessary for

•  Scaling
•  High Availability

"  In case a host crashes or is removed
#  All blocks on that host are automatically replicated to other hosts

"  In case a host is added
#  Blocks will be rebalanced so that some blocks from other hosts will be

placed on the new host

HDFS Component Responsibilities

! Name Node
– Managing the file system namespace:

•  Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
– Coordinating file operations:

•  Directs clients to datanodes for reads and writes
•  No data is moved through the namenode

– Maintaining overall health:
•  Periodic communication with the datanodes
•  Block re-replication and rebalancing
•  Garbage collection

! Data Node
– Actual storage and management of data block on a single host
– Provides clients with access to data

25

26

HDFS

HDFS Components in Cluster

datanode daemon

Linux file system

…

slave node

datanode daemon

Linux file system

…

slave node

datanode daemon

Linux file system

…

slave node

namenode

namenode daemon

master node

27

! Platform for distributed storage and computation
– HDFS
– MapReduce
– Ecosystem

28

Hadoop

Source: Hadoop in Practice, Alex Holmes, Manning Publications Co., 2012

MapReduce (MR) can refer to…
"  The execution framework (aka “runtime”)

"  The programming model

"  The specific implementation

Usage is usually clear from context!

MR Framework Components

! Job Tracker
– Central component responsible for managing job lifecycles
– One Job Tracker per MR framework instance
– Accepts job submissions, queries etc. from clients
– Enqueues jobs and schedules individual tasks.
– Communicates with Task Trackers to deploy and run tasks
– Attempts to assign tasks to support Data Locality.

! Task Tracker
– One Task Tracker per host
– Runs and manages individual tasks
– Communicates progress of tasks back to Job Tracker.

30

MR Programming Model
"  Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
#  All values with the same key are sent to the same reducer

"  The MR Execution framework handles everything else…

What’s “everything else”?

32

MapReduce

! Everything Else
! Handles scheduling

– Assigns workers to map
and reduce tasks

! Handles “data distribution”
– Moves processes to data

! Handles synchronization
– Gathers, sorts, and shuffles

intermediate data

! Handles errors and faults
– Detects worker failures

and restarts

! Everything happens on top
of a distributed FS (HDFS)

Our Scoring Algorithm as a Map Reduce Program

33

Our Analytic

Basic Hadoop API*
"  Mapper

#  void map(K1 key, V1 value, OutputCollector<K2, V2> output,
Reporter reporter)

#  void configure(JobConf job)
#  void close() throws IOException

"  Reducer/Combiner
#  void reduce(K2 key, Iterator<V2> values,

OutputCollector<K3,V3> output, Reporter reporter)
#  void configure(JobConf job)
#  void close() throws IOException

"  Partitioner
#  void getPartition(K2 key, V2 value, int numPartitions)

*Note: forthcoming API changes…

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Lets Talk Numbers

"  How many mappers?
#  Depends on the size of input data
#  Typically 1 mapper per data block
#  So 1 GB input data will have around 8 Mappers

•  Assuming 128MB block size

"  How many reducers?
#  Depends on cluster reducer capacity
#  Can be set depending on the expected number of keys
#  For large data sets, set it to cluster reducer capacity

MapReduce
"  Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
#  All values with the same key are reduced together

"  The execution framework handles everything else…

"  Not quite…usually, programmers also specify:
combine (k’, v’) → <k’, v’>*
#  Mini-reducers that run in memory after the map phase
#  Used as an optimization to reduce network traffic
partition (k’, number of partitions) → partition for k’
#  Often a simple hash of the key, e.g., hash(k’) mod n
#  Divides up key space for parallel reduce operations

Two more details…
"  Barrier between map and reduce phases

#  But we can begin copying intermediate data earlier

"  Keys arrive at each reducer in sorted order
#  No enforced ordering across reducers

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
pu

tF
or

m
at

Input To Mappers

Shuffle and Sort

Mapper

Reducer

other mappers

other reducers

circular buffer
(in memory)

spills (on disk)

merged spills
(on disk)

intermediate files
(on disk)

Shuffle and Sort in Hadoop
"  Probably the most complex aspect of MapReduce!

"  Map side
#  Map outputs are buffered in memory in a circular buffer
#  When buffer reaches threshold, contents are “spilled” to disk
#  Spills merged in a single, partitioned file (sorted within each

partition): combiner runs here

"  Reduce side
#  First, map outputs are copied over to reducer machine
#  “Sort” is a multi-pass merge of map outputs (happens in memory

and on disk): combiner runs here
#  Final merge pass goes directly into reducer

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reduce

Output File

RecordWriter

O
ut

pu
tF

or
m

at

Output File

RecordWriter

Output File

RecordWriter

Reducer to Output

Input and Output
"  InputFormat:

#  TextInputFormat
#  KeyValueTextInputFormat
#  SequenceFileInputFormat
#  …

"  OutputFormat:
#  TextOutputFormat
#  SequenceFileOutputFormat
#  …

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

46

! Master
– NameNode
– JobTracker

! Slaves
– Data Node
– Compute Node
– Why together?

•  Data Locality

47

HADOOP Architecture

One More Thing

! Distributed Cache
– Usually used for files of small size
– Provides a convenient way to propagate applications and configuration

files
– HDFS is not used handle such files due to their small size
– Shared across all nodes in the MapReduce cluster

48

Dizzy Yet?

! OK, we went through a lot of details

! Whatever happened to the simplicity of programming??

! Do I really have to write a MapReduce program every time I want to run a new
analytic?

49

We went from..

50

Multi-Threaded Map-Reduce

Enter PIG … Oink!

! High Level Languages for Map-Reduce
– PIG

•  Developed by Yahoo
– HIVE

•  Developed by Facebook
– JAQL

•  Developed by IBM

! All of these languages provide similar functionality

! All of them allow users to plug in their own user defined functions (UDFs)

51

Lets get Practical – From Setup to Results

Setting up a Hadoop Cluster

! Minimum recommended configuration (4 Hosts)
– 1 Host Dedicated for Management Services (Job Tracker, Name Node etc)
– 3 Hosts as Slave nodes (Data Node , Task Trackers)

! Data nodes should have high capacity local disks attached.
– This is where all your data is going to be

! How much total disk space?
– Depends on input data to be processed
– Effective Storage Space Recommended: Typically 3 times your input data size
– Actual Storage Space: Effective Storage Space * 3 (replication level)

! Single node installation is fine for development/testing on very small data
– Perhaps not the best for testing performance

!  Installation instructions vary from provider to provider

52

Some cluster configuration parameters

! HDFS configuration parameters
– Stored in hdfs-site.xml
– Block size
– Default replication count

! MapReduce configuration parameters
– Stored In “mapred-site.xml”
– Java heap size for mappers/reducers
– Number of mappers/reducers per host

•  See http://wiki.apache.org/hadoop/HowManyMapsAndReduces

!  IMPORTANT
– Job Tracker URL: http://<masterhost>:50030
– Name Node URL: http://<masterhost>:50070

53

Job Tracker Web Page (port 50030)

54

Working with data

! Lets say you have 1 GB of data in your local filesystem (mydata.txt)

! Load into HDFS
– hadoop fs –mkdir /path/mydirectory
– hadoop fs –put mydata.txt /path/mydirectory
– where /path/mydirectory is in HDFS

! List the file you just uploaded
– hadoop fs –ls /path/mydirectory

!  “hadoop fs” works similar to linux filesystem commands
– However HDFS is not POSIX compliant.
–  It cannot be mounted as a regular filesystem

55

Writing your program .. see the simplicity!!

!  JAQL program for running our scorer

! PIG program for running our scorer

56

All languages provide similar functionality

! LOAD (various data formats)

!  JOIN

! FOR-EACH

! GROUP

! SORT

! FILTER

! Pluggable UDFs

57

Hadoop Programming Tips

! Thinking at scale
– Filter unwanted data earlier in the flow
– Store intermediate data
– Use “sequence” format for storing data.

! These are not iterative languages
– i.e. No for or while loops

! Watch out for obvious bottlenecks
– Single key for all mapper output will send data to one reducer
– Too much data sent to a UDF will result in OOM errors

58

Submitting a Job

! Create and save your PIG script (myscript.pig)

! To deploy (pig command will be in your installation)
– pig –f myscipt.pig
– Command will complete once your job completes

! To check the status of your job
– Use the Job Tracker URL (easiest) OR
– hadoop job –list (will print all job ids)
– hadoop job –status <jobid> (will print the job status)

! To get the results
– hadoop fs –get /path/results.txt .

59

Anatomy of a Job
"  MapReduce program in Hadoop = Hadoop job

#  Jobs are divided into map and reduce tasks
#  An instance of running a task is called a task attempt
#  Multiple jobs can be composed into a workflow

"  Job submission process
#  Client (i.e., driver program) creates a job, configures it, and

submits it to job tracker
#  JobClient computes input splits (on client end)
#  Job data (jar, configuration XML) are sent to JobTracker
#  JobTracker puts job data in shared location, enqueues tasks
#  TaskTrackers poll for tasks
#  Off to the races…

Hadoop Workflow

Hadoop Cluster You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

4. Retrieve data from HDFS

Uh Oh.. My Job Failed…Now what?
"  First, take a deep breath

"  Start small, start locally

"  Strategies
#  Learn to use the webapp
#  Where does println go?
#  Don’t use println, use logging
#  Throw RuntimeExceptions

"  Logs are most easily accessible via the Job Tracker URL

How about a Demo

Time for a Raise
"  Finally you have mastered Hadoop Big Data

"  Your applications are scaling.
#  You deserve a raise!!

"  Boss
#  Can we query the data for specific entities?
#  How long will that take?

"  Problem
#  Remember this is still sequential access
#  To find a specific entity, you still need to read the entire data set.

"  What now?
#  How is this solved in traditional systems?

Databases

Enter - HBASE
"  NOSQL Data Stores

"  But that’s another discussion

Questions?

Resources
"  Papers

#  Google File System, 2003
#  Google MapReduce, 2004
#  Google Bigtable, 2006

"  URLS
#  Apache Hadoop: http://hadoop.apache.org

"  Available Hadoop Distributions
#  Apache, IBM, Cloudera, Hortonworks

Other projects based on Hadoop
"  HBase

"  Hive

"  PIG

"  Spark

"  Mahout

Hive – a SQL-like data warehouse on
Hadoop
https://cwiki.apache.org/confluence/display/Hive/Tutorial

"  Supports a SQL-like data warehouse
on top of Hadoop – began at Facebook

"  Provides SQL users the capability of
big data without requiring lower level
programming for a wide range of tasks

"  Fewer lines of code!

"  /bin/hive –help

Hive Architecture

"  Main components
#  SQL interface
#  Parser/Planner
#  Metastore
#  Driver

Wordcount Example

Hive Data Model – partition and cluster
"  Tables stored under user/hive/warehouse in HDFS

"  Partition columns

"  Buckets – allows to create smaller range partitions

A simple illustration of MR process

YARN

Hadoop Eco-system (prior to Hadoop 2)

Larger View…

MR Patterns Examples
"  Jimmy Lin’s book

"  Jeffrey Ulman’s book

"  An excellent blog: https://highlyscalable.wordpress.com/2012/02/01/mapreduce-
patterns/

