

THINC Client in JAVA

Young Jin Yoon <yy2223@columbia.edu>

Department of Computer Science

Columbia University

Table of Contents

Chapter 1. Objectives

Chapter 2. Development environment

Chapter 3. Why not PDA?

Chapter 4. Project Plan

Chapter 5. Design & Refactoring

Chapter 6. Implementation

Chapter 7. Lessons Learned

Chapter 8. Revising Thinc Protocol

Appendix A. References

Appendix B. implementation note for THINC Client in JAVA

 - 2 -

Chapter 1. Objectives

Implement THINC Client for PDA in JAVA with full functionality. Based on THINC

protocol specification, it should handle all possible frame buffer, video, cursor, and

sound messages from the server. Moreover, it should send proper messages to the

server when an event from user occurs, such as mouse move and click, resize the

window and key press.

Chapter 2. Development Environment

2.1. For computer

CPU: Intel Pentium Mobile 1.73Ghz

Memory: 1GB

OS: Microsoft Windows XP Home edition Version 2002 Service Pack 2

Language: JAVA

JVM: Sun J2SE 1.5.0_08

IDE: Eclipse SDK version 3.2.0

Library used: PNG decoder(com.sixlegs.png)

2.2. For PDA

Model : DELL AXIM X51v

CPU: Intel PXA270 (StrongARM)

Memory: 49.43MB

OS: Microsoft Windows Mobile Version 5.0

 - 3 -

Chapter 3. Why not PDA?

First of all, I couldn’t implement THINC Client for PDA in JAVA. In This Chapter I will

try to describe why I could not implement it, it what I have done.

3.1. Feasibility Study

I searched various areas to find the proper Java Virtual Machine for the PDA described

on Section 2. In JAVA, there are three platform specified by Java community. For PDA

and cell phone, Java Platform, Micro Edition (J2ME) is suitable to use. In J2ME, there

are profile and configuration, which described as below by Sun:

• Configuration. A J2ME configuration defines a minimum platform for a

“horizontal” class or family of devices, each with similar requirements on

total memory budget and processing power. A configuration defines the Java

language and virtual machine features and minimum libraries that a device

manufacturer or a content provider can expect to be available on all devices

of the same class.

• Profile. A J2ME profile addresses the specific demands of a certain

“vertical” market segment or device category. The main goal for a profile is

to guarantee interoperability in a certain vertical device category or domain

by defining a standard Java platform for that market. Profiles may include

libraries that are far more device category specific that libraries provided in

a configuration. Profiles are implemented on top of a configuration.

Because configuration denotes the type of operated devices, I had to choose the

configuration between CLDC and CDC. Because CLDC denotes Limited devices such as

cell phone, it seems to choose CDC better. However, because Java Virtual Machine for

CDC has not completely configured and settled as such a good JVM package, choosing

CLDC seems like the only solution for J2ME. The goal of CLDC is supporting limited

devices described below:

Connected, Limited Device Configuration (CLDC)

 160 kB to 512 kB of total memory budget available for the Java platform

 a 16-bit or 32-bit processor

 low power consumption, often operating with battery power

 connectivity to some kind of network, often with a wireless, intermittent

 connection and with limited (often 9600 bps or less) bandwidth

 - 4 -

There are various JVM which supports CLDC or CDC configuration. I described pros

and cons for each Java Virtual Machines on Table 1.

JVM name Publisher Advantage Disadvantage

J9 JVM IBM

Supports a lot of different

environment such as

Windows mobile, Pocket

Linux, etc. Supports both

CDC and CLDC.

Commercial Product, No

PNG library

CrEme NSICOM

CDC support for recent

version, Supports good AWT

interfaces

No PNG library

Personal Java Sun

Most stable, made by Sun Not maintained anymore,

limited functionality, No

PNG and ZIP library

Mysaifu
Haneta

(Personal)

Almost Full J2SE support,

GPL licensed

Unstable, Out of memory

error

SuperWaba

Good support for PDA

devices, PNG and ZIP

support

Commercial for Additional

feature, such as PNG

library, Not following

Standard Java specification

Jeode Esemertec

Supporting Dell Axim X5 Commercial and does not

providing SDK, No PNG

and ZIP library

Kaffe
Open

Source

Open Source JVM. Implementation is not

complete and contains

bugs, Linux only

Table 1 Various JVM for PDA

To implement PDA version of THINC Client, It should supports PNG and ZIP library.

Because I do not have much time to make PNG and ZIP library from the scratch, I

cannot implement PDA version of THINC. If JVM supports those libraries, however, it

has some commercial license to pay about 100 dollars, which cost a lot. Even I can have

the money to buy them, there is no promise that I can complete implementation with

those Commercial JVM.

 Because of that, I tried to use Mysaifu JVM, which is suitable to use PNG library from

 - 5 -

J2SE. However, it did not work because of absurd out of memory error. Even I tried to

minimize the size of the code and memory occupancies, it did not work, still.

 As a result, I couldn’t make any THINC client for PDA in JAVA. To make this, we have

to negotiate available compression library between client and server, which is slightly

different from current implementation of THINC. I will describe proposal of revised

THINC protocol on Chapter 8.

3.2. Not for PDA, but for J2SE

From the provided THINC Client source code in JAVA, It does not have any cache,

video, resize, and SSL implementation. Moreover, the color of image from network

seems to process improperly from the client. It seems like well object-oriented from

first draft, however, it does not maintained properly because it has hard-coded

handshaking stages, and improperly added PNG library features. It also does not have

any comments for next developer.

For that reason, I decided to rewrite the source code of THINC Client in JAVA, which

should be object-oriented, well-commented with full functionality. First of all, the

reason of improper image color is caused by ARGB format itself. Because Java

BufferedImage class prefers to use ABGR rather than RGBA or ARGB format from the

server, I had to make convert methods to convert RGBA and ARGB into ABGR pixel

format. Next, I redesigned the whole class diagram for THINC Client in JAVA. I

designed ThincHandler, ThincMsg, ThincMsgFlag and ThincVideoFormat classes, and

try to derive every class in THINC Client from those classes. Based on these classes, I

rewrote entire source code for speed of THINC Client and implemented Video, SSL,

resize and cache in new version of THINC Client. For detailed information about

redesign for THINC Client, I will explain in Chapter 5.

 I also concentrated to add a comment for next developers. Because it is only one

semester project for me, there would be another student who will improve or make

another THINC Client for PDA or normal client version of JAVA. For that reason, it is

very important to add comments for maintaining the source code.

 - 6 -

Chapter 4. Project Plan

In this chapter, I will describe what my project plan was, and what is changed as time

goes by.

4.1. First Project Plan

Before I received the code, I thought it works properly. Because I set my first project

plan beyond of that assumption, it seems to be awkward for now. However, it is

described as Table 2.

Start from End to Issues Description

1.Sep.06 16.Sep.06 Feasibility study
Search the PDA version of JVM as many

as possible

9.Sep.06 23.Sep.06 Feasibility study
Test code for Network, Image in PDA

simulator

17.Sep.06 30.Sep.06 Feasibility study
Analyzing source code of THINC Client

in JAVA

17.Sep.06 30.Sep.06 Feasibility study
Analyze the THINC Protocol

specification

1.Oct.06 16.Oct.06 PDA Assigning Assign the PDA

1.Oct.06 16.Oct.06 PDA Feasibility Find the PDA supported JVM

7.Oct.06 16.Oct.06 PDA Feasibility Test code for Network, Image in PDA

11.Oct.06 16.Oct.06 PDA Feasibility
Try to send some init messages to

server

17.Oct.06 6.Nov.06 Class Design Class Design PDA Version of THINC

7.Nov.06 17.Nov.06 Implementation Implement PDA Version of THINC

10.Nov.06 20.Nov.06 Function Test Functional test for each messages

21.Nov.06 1.Dec.06 Integration Test Test with full functionality

7.Nov.06 10.Dec.06 Debugging Should be with function/integration test

10.Dec.06 13.Dec.06 Write a Report Write a final report

10.Dec.06 15.Dec.06
Preparing

presentation

Make example case for presentation

Table 2 First draft of Project plan

 - 7 -

4.2. Revised Project Plan

As soon as I found the source code is not working properly, I decided to maintain both

normal JAVA client and PDA client. Figure 2 is the revised version of my Project Plan,

which considers both PDA and normal client for JAVA. Bolded letter represents

refactoring issues for my revised Project Plan.

Start from End to Issues Description

1.Sep.06 16.Sep.06 Feasibility study
Search the PDA version of JVM as many

as possible

9.Sep.06 23.Sep.06 Feasibility study
Test code for Network, Image in PDA

simulator

17.Sep.06 30.Sep.06 Feasibility study
Analyzing source code of THINC Client

in JAVA

17.Sep.06 30.Sep.06 Feasibility study
Analyze the THINC Protocol

specification

23.Sep.06 7.Oct.06 Refactoring Redesign THINC Client in JAVA

1.Oct.06 16.Oct.06 PDA Assigning Assign the PDA

1.Oct.06 16.Oct.06 PDA Feasibility Find the PDA supported JVM

7.Oct.06 16.Oct.06 PDA Feasibility Test code for Network, Image in PDA

11.Oct.06 16.Oct.06 PDA Feasibility
Try to send some init messages to

server

17.Oct.06 30.Oct.06 Class Design Class Design PDA Version of THINC

31.Oct.06 6.Nov.06 Refactoring
Rewrite the source code of THINC Client

in JAVA

7.Nov.06 17.Nov.06 Implementation Implement PDA Version of THINC

10.Nov.06 20.Nov.06 Function Test Functional test for each messages

21.Nov.06 1.Dec.06 Integration Test Test with full functionality

7.Nov.06 10.Dec.06 Debugging Should be with function/integration test

10.Dec.06 13.Dec.06 Write a Report Write a final report

10.Dec.06 15.Dec.06
Preparing

presentation

Make example case for presentation

Table 3 Revised draft of Project plan

 - 8 -

4.3. Actual works

I followed my Project Plan until October except feasibility study for PDA. I tried to find

another way to implement PDA without PNG library. First I tried not to use PNG or ZIP

library for PDA version. I made some test code for that, however it didn’t work because

the server tells what compression algorithm will be used without any negotiation. Next I

tried to modify the open source of PNG library. Because it is totally based on standard

J2SE, I cannot modify it into J2ME version because of complexity. Last, I tried to make

my own PNG library from the specification from libpng.org. However, it failed because

it is too complicated to implement all options in PNG format. So the best way to do was

just keep doing normal client version with feasibility study for PDA.

 Finally, I found mysaifu JVM which support almost every specification of J2SE. I

thought I can maintain two versions (PDA version and normal version) with only one

code if I use those mysaifu JVM. I tested java swing components and JPanel

implementation of mysaifu JVM with some image. Moreover I tested socket operation by

using SocketChannel class in J2SE. However, when I try to draw initial frame buffer

onto the screen, mysaifu JVM causes the out of memory error.

 The unimplemented feature of previous THINC Client in JAVA contributes to delay my

project progress. Because the resize and video stream messages were little bit different

from THINC Protocol specification I received, I have to figure out with the server side.

Even I did not test the sound because it is not configured well on the server side.

Basically, it is not a problem from maintainer; however, the sound seems like not

configured easily on the server side.

 As a result, I could make THINC Client in JAVA, but not suitable for PDA. I think we

have to modify the handshaking stages in THINC Protocol to make THINC useful to

limited devices such as PDA. Based on my experiences, because J2ME does not have

good supported PNG or ZIP library currently available, it should be disabled by the

client side with negotiation.

 - 9 -

Chapter 5. Design and Implementation

In this Chapter, I will explain the design of THINC Client in JAVA. First I will show the

entire class diagram for THINC Client, and then I will explain part by part including

what is revised.

5.1. Class Diagram

Figure 1, 2 and 3 are the Class diagram for final implementation of THINC Client, in

JAVA. Because its classes are more than 100, It cannot be shown in this document. I

attached <dia.jpg> for entire class diagram. If you have UML tool, you can see it by

opening < (default package).uml> file.

Figure 1 Class diagram for THINC Client in JAVA (part 1)

 - 10 -

Figure 2 Class diagram for THINC Client in JAVA (part 2)

Figure 3 Class diagram for THINC Client in JAVA (part 3)

 - 11 -

It seems that hard to understand. However, the entire structure for THINC Client in

JAVA does not hard as expected. Simple diagram to describe how it works is in Figure

4.

Figure 4 how THINC Client in JAVA works?

When the message comes from the server, first ThincMsgHandler receives the

message and recognize the type, flag and length of the message. And then it passes the

control to proper ThincSMsg derived classes (call it ThincSMsg family in figure). When

ThincSMsg derived classes need to get more messages, it simply invokes getMessage

method in ThincMsgHandler class. If it has flags to process, it is processed by

ThincMsgFlag family. When it is ready to draw images on frame buffer, or modify the

information of the cursor, it calls various methods in ThincClientCanvas.

 When user inputs valid events, it calls process method in proper ThincCMsg family by

ThincClientCanvas. In process method, it processes the event and get the information

from the event. Whenever ready to send, it invokes send method in ThincMsgHandler

class. And then ThincMsgHandler puts proper THINC header automatically then calls

putMessage method in ThincCMsg family to put proper message followed by. After

finished, it sends the message to the server.

 Message for sound works similar. However, because there is no such ThincCMsg for

sound, ThincSoundHandler only handles the message from the server and yield the

control into proper ThincSMsg family.

 - 12 -

5.2. ThincHandler family

ThincHandler family is for handling all socket operation. It masks socket implementation

from ThincMsg family for easy implementation. Moreover, it also analyzes THINC

header from the message and yield the control to a proper ThincSMsg derived class. It

provides implemented methods for socket operation. Methods provided by ThincHandler

are:

createSocketChannel() Creates socket connection

closeSocketChannel() Closes socket connection

send() Send ThincCMsg family to the server

putThincHeader() Put THINC header to send (only used as private)

sendBytes()
Primitive method for sending message (used when initial

handshake and in send() method)

getMessage() Get message from the network (used in ThincSMsg)

recvBytes()
Primitive method for receiving message (used when initial

handshake and in getMessage() method)

getLastSent() Get THINC type of last sent

setSSLSocketChannel() Set socket as SSL mode

handshakeCompleted()
Only invoked when handshake for SSL is completed. (defined

as private type)

Detailed Class diagram for ThincHandler is described in Figure 5.

 - 13 -

Figure 5 Class diagram for ThincHandler family

5.3. ThincMsg family

ThincMsg family consists of ThincCMsg family and ThincSMsg family. ThincCMsg

family is for send the message from the client; while ThincSMsg family is for receive

the message from the server. It provides abstract process() method for each derived

classes. Usage for that method is:

process()

Processes the actual message in here. In case of ThincSMsg, it is

invoked by ThincMsgHandler. For ThincCMsg, it is invoked by

ThincClientCanvas, generally.

 - 14 -

5.3.1. ThincCMsg family

ThincCMsg family is for creating the message and sending it to the server. It provides

abstract messageSize(), putMessage(), getMsgType(), headerSize() and getFlag()

methods for each derived classes. Usage for each method is:

messageSize() Returns the total message size when it generates message.

putMessage() Put the message into the buffer to be sent.

getMsgType()
Returns the type of message when ThincMsgHandler generates THINC

header.

headerSize()
Returns the header size of the message(not THINC header) when it

required in ThincCMsgInitReply.

getFlag()

It is only for future implementation. It returns the flags when

ThincMsgHandler generates THINC header. Currently it is set to 0 as

default.

Lists and works for each ThincCMsg family except ThincCMsgInitRequest are as

follows:

ThincCMsgEventKey Create the message from the key input of user

ThincCMsgEventMouseButton
Create the message from the mouse click/release of

user

ThincCMsgEventMouseMove Create the message from the key move of user

ThincCMsgInitAuth Create the message from the id/password of user

ThincCMsgInitClientDone Create the message that handshake is done

ThincCMsgInitOK Create the message for ACK of client

ThincCMsgInitNotOK Create the message for NAK of client

ThincCMsgInitSecCaps Create the message for security capability of client

ThincCMsgResizeEvent Create the message for resize event of client

ThincCMsgResizeUpdate Create the message for resize update region of client

5.3.1.1. ThincCMsgInitRequest family

ThincCMsgInitRequest family is for creating the initial handshake request message and

sending it to the server. Because init request have additional header for its request, it is

much easier to make each class for each additional header.

Lists and works for each ThincCMsgInitRequest family are as follows:

 - 15 -

ThincCMsgInitRequestCacheSize
Create the message for initial cache size

request

ThincCMsgInitRequestCursor
Create the message for initial cursor

request

ThincCMsgInitRequestEncoder Create the message for encoder request

ThincCMsgInitRequestFBData
Create the message for initial frame buffer

data request

ThincCMsgInitRequestFBInfo
Create the message for initial frame buffer

information request

ThincCMsgInitRequestNoVideo Create the message for supporting no video

ThincCMsgInitRequestVideo Create the message for supporting video

ThincCMsgInitRequestVideoClientFormat
Create the message for supported video

client format

ThincCMsgInitRequestVideoServerFormat
Create the message for supported video

server format request

5.3.2. ThincSMsg family

ThincSMsg family is for handling the message from the server and drawing frame buffer,

operating with cursor, and processing for video stream. It does not provide any method

for derived class because process() method in ThincMsg can handles server message

processing.

Lists and works for each ThincSMsg family except ThincSMsgInitReply are as follows:

ThincSMsgAck Handle the message for ACK from the server

ThincSMsgCursorChang

e

Handle the message for cursor change from the server

ThincSMsgCursorColor
Handle the message for changing cursor color from the

server

ThincSMsgCursorMove Handle the message for cursor move from the server

ThincSMsgCursor

ShowHide

Handle the message for cursor show/hide from the server

ThincSMsgFBCopy Handle the message for frame buffer copy from the server

ThincSMsgFBFillBilevel
Handle the message for filling bitmap pixel to the frame

buffer from the server

 - 16 -

ThincSMsgFBFillGlyph
Handle the message for filling glyph bitmap pixel to the

frame buffer from the server

ThincSMsgFBFillPixMap
Handle the message for filling pixmap pixel to the frame

buffer from the server

ThincSMsgFBFillSolid
Handle the message for filling solid to the frame buffer from

the server

ThincSMsgFBRawUpdat

e

Handle the message for filling raw image to the frame buffer

from the server

ThincSMsgInitNotOK Handle the message for NAK for handshake from the server

ThincSMsgInitOK Handle the message for ACK for handshake from the server

ThincSMsgInitSecCaps Handle the message for security capability from the server

ThincSMsgInitSessCaps
Handle the message for security capability ACK from the

server

ThincSMsgSoundClose Handle the message for sound stream close from the server

ThincSMsgSoundOpen Handle the message for initial sound config from the server

ThincSMsgSoundPlay Handle the message for playing sound from the server

ThincSMsgVideoEnd Handle the message for video stream close from the server

ThincSMsgVideoMove
Handle the message for moving the location of video from

the server

ThincSMsgVideoNext Handle the message for playing video from the server

ThincSMsgVideoResize
Handle the message for resizing the size of video from the

server

ThincSMsgVideoScale Handle the message for video scaling from the server

ThincSMsgVideoStart Handle the message for video stream open from the server

5.3.2.1. ThincSMsgInitReply family

ThincSMsgInitReply family is for handling the initial handshake reply message and

sending it to the server. Because init request have additional header for its request, it is

much easier to make each class for each additional header.

Lists and works for each ThincSMsgInitReply family are as follows:

ThincSMsgInitReplyCacheSize
Handle the reply for initial cache size from the

server

ThincSMsgInitReplyCursor Handle the reply for initial cursor information

 - 17 -

from the server

ThincSMsgInitReplyEncoder
Handle the reply for encoder type from the

server

ThincSMsgInitReplyFBData
Handle the reply for initial frame buffer data

from the server

ThincSMsgInitReplyFBInfo
Handle the reply for initial frame buffer

information from the server

ThincSMsgInitReplyNotOK
Handle the reply for initial request NAK from

the server

ThincSMsgInitReplyOK
Handle the reply for initial request ACK from

the server

ThincSMsgInitReplyUnknown
Handle the reply for initial request is unknown

from the server

ThincSMsgInitReplyVideoServerFormat
Handle the reply for server video format from

the server

5.4. ThincMsgFlag family

ThincMsgFlag family is for receiving message related to flag in THINC header. When

there is a flag in THINC header, the following message should contain some information

about flags before handling actual THINC messages. It is made for handling those

additional messages. It does not provide any method for derived class because it is too

vary to handle all flag types in one method. Detailed Class diagram for ThincMsgFlag

family described in Figure 6.

 - 18 -

Figure 6 Class diagram for ThincMsgFlag family

5.4. ThincVideoFormat family

ThincVideoFormat family is for handing video stream in THINC messages. Because

each video stream has there own video format to process, THINC Client should handle

each video stream differently. Currently it support YV12, UYVY and YUY2 format by

ThincVideoFormatYV12, ThincVideoFormatUYVY, and ThincVideoFormatYUY2,

respectively. Detailed class diagram for ThincVideoFormat family is described in Figure

7.

 - 19 -

Figure 7 Class diagram for ThincVideoFormat family

5.5. ThincClientCanvas

ThincClientCanvas is for drawing actual image to the screen, for cache handling and for

cursor handling. It masks complicated JWT Framework operation from ThincMsg family.

It generally derived from JPanel in standard JWT Frameworks which replaces Canvas in

AWT. Name of the class originated from Canvas in AWT and it works as expected. It

draws frame buffer onto the screen periodically and handles all information about

cursor, key input, mouse movement and cache for various image types. Detailed class

diagram is described in Figure 8.

 - 20 -

Figure 8 Class diagram for ThincClientCanvas

 - 21 -

5.6. ThincFrame

ThincFrame is derived class from JFrame in standard JWT Frameworks which replaces

Frame in AWT. It contains ThincClientCanvas object and login window as Figure 9.

When user puts the login information to this, it passes the information to the ThincClient

class, and then ThincMsgHandler, ThincSoundHandler will use that information from

ThincClient class. Detailed class diagram is described in Figure 10.

Figure 9 Login Window for THINC Figure 10 Class diagram for

ThincFrame

5.7. ThincClient

ThincClient is the class which contains main function. It also has various user and client

information including handshake information. Detailed class diagram is described in

Figure 11.

 - 22 -

Figure 11 Class diagram for ThincClient

 - 23 -

Chapter 6. Lessons Learned

First of all, I was amazed that I can play some video stream via network by using

remote desktop environment. Because playing video has such a heavy network load, I

thought that anything cannot play video in remote desktop environment at the same time.

However, THINC does this very well by sending messages from low-level.

Moreover, I learned a lot of video related knowledge from that project. Because I did

not take Computer Graphics course in previous institution, I am not good for how video

works. (Even I know something about 3D graphics manipulation by Media processing

class, I did not know about 2D graphics and its displaying mechanism from the bottom).

By implementing THINC Client, I realize how video works by analyzing each messages

coming from the server.

 However, I couldn’t implement PDA version of THINC Client because of lack of

supported library. Even Personal Profile in CDC in J2ME supports almost all of

functionality of JAVA, I cannot get the PNG library for J2ME, which required to process

image resource from memory. By modifying standard PNG library for J2SE, I thought it

could be implemented with modified PNG library; however, it is too complicated to

modify all source code of PNG library suitable to JAVA.

In conclusion, it was good experience to increase my background knowledge for video.

Even I could not implement PDA version of THINC, It was enough to study the

mechanism of video.

 - 24 -

Chapter 7. Revising THINC Protocol

In this Chapter, I will introduce how to revise the THINC protocol so that client can be

implemented in limited device and for better performance. In each section of this

chapter, I will try to explain what should be revised and propose newly designed THINC

protocol.

7.1. Handshaking

The entire handshaking stage is as followed:

1. Server sends its version string of THINC without header

2. Client replies with its version string of THINC without header

3. Server sends security capability such as Authentication and SSL availability

4. Client respond security capability

5. Server sends session security capability as an ACK or sends NAK.

6. If SSL is enabled, do some handshake for SSL.

7. If authentication is required, send authentication information to the server

8. If authentication information comes from client, server replies with ACK or NAK

9. Client requests various initialization options

10. Server replies client’s request.

11. Client sends done message when handshaking is done.

In client request, there is no absolute sequence of request. However, it seems that

there is preferred sequence defined by enum keyword in C structure.

typedef enum {
 T_REQ_FBINFO=T_REPLY_LAST /* basic framebuffer info */
 , T_REQ_CURSOR /* cursor information and data */
 , T_REQ_FBDATA /* contents of framebuffer */
 , T_REQ_ENCODER /* how is image data encoded */
 , T_REQ_CACHESZ /* size of various caches */
 , T_REQ_VIDEO /* server supports video? */
 , T_REQ_NOVIDEO /* client telling server that it
 can't support video (see below) */
 , T_REQ_VIDEO_SERV_FMTS /* video formats supported by server */
 , T_REQ_VIDEO_CLIENT_FMTS /* client informs server of its video
 formats */
 , T_REQ_KEEPALIVE /* client supports or not keepalives
 does server support them? */
 , T_REQ_APP_SHARING /* does the server support application
 sharing? */

 - 25 -

 , T_REQ_APP_LIST /* list of available applications */
 , T_REQ_APP_GET /* request a particular application.
 client may send this message
 multiple times */
} thinc_clientReqs

Table 4 prefered sequence of THINC handshaking

7.1.1. Revising encoder type in handshaking stage

Table 4 seems awkward because encoder type should be in front of frame buffer data

because frame buffer data contains a lot of compressed raw image. Even frame buffer

has its own flag for notifying what kind of encoding type is by using that, we can

eliminate those flag if encoder handshaking is in prior to frame buffer data handshaking.

So, I suggest making some sequence for each handshaking request, at least between

encoder and frame buffer data.

 Moreover, because encoding type is only sent by the server, if there is no library for

PNG or ZIP compressed image, the client will not work because of the encoding type

from the server. For more flexibility, I suggest following negotiation algorithm for

encoding type.

First, new encoding stage looks like as followed:

1. Client sends request to the server to receive the server’s encoding type.

2. Server sends its available encoding type to the server

3. Client responds its available encoding type based on server’s type

4. Server decides to choose encoding type and send it to the server based on

client response.

New encoding protocol is designed in Table 5.

typedef struct thinc_reqServEncoder_s {
 t_req_head;
} thinc_reqServEncoder;

#define T_REQ_SERV_ENCODER_SIZE 0

typedef struct thinc_replyServEncoder_s {
 t_reply_head;
 int which :8; /* zlib, png, none. see below */
 int reserved :24; /* reserved for future use */
} thinc_replyServEncoder
#define T_REPLY_SERV_ENCODER_SIZE 4

typedef struct thinc_requestClientEncoder_s {
 t_req_head;
 int which :8; /* zlib, png, none. see below */
 int reserved :24; /* reserved for future use */
} thinc_replyClientEncoder
#define T_REPLY_ CLIENT_ENCODER_SIZE 4

 - 26 -

typedef struct thinc_replyClientEncoder_s {
 t_req_head;
 int which :8; /* zlib, png, none. see below */
 int reserved :24; /* reserved for future use */
} thinc_replyClientEncoder
#define T_REPLY_CLIENT_ENCODER_SIZE 4

#define T_ENCODER_NONE 0x00
#define T_ENCODER_PNG 0x01
#define T_ENCODER_ZLIB 0x02

Table 5 Revised design of THINC encoder handshaking

7.1.2. Revising Cache size handshaking

Because cache consumes some memories, cache should be negotiable from the client

for limited devices. I proposed new cache size handshaking method because of that

purpose.

First, new cache size stage looks like as followed:

1. Client sends its mostly available(maximum) cache size to the server

2. Server responds prefer cache size based on client’s size.

3. Client sends ACK for server’s response.

New cache size negotiation protocol is designed in Table 6.

/****** CACHESIZE ***************/
typedef struct thinc_reqCacheSz_s {
 t_req_head;
 /* all cache sizes are in bits */
 int img:8;
 int bit:8;
 int pix:8;
 int reserved:8;
} thinc_reqCacheSz;

#define T_REQ_CACHESZ_SIZE 0

typedef struct thinc_replyCacheSz_s { // client sends OK or NotOK.
 t_reply_head;
 /* all cache sizes are in bits */
 int img:8;
 int bit:8;
 int pix:8;
 int reserved:8;
} thinc_replyCacheSz;

#define T_REPLY_CACHESZ_SIZE 4

Table 6 Revised design of THINC cache size handshaking

 - 27 -

7.2. Frame Buffer operation

For frame buffer message incoming from server, it is so solidified that it seems nothing

will be changed. However, there is something I found to making easier implementation.

7.2.1. Flag option for frame buffer images

In Protocol specification of THINC, it says that each flag option is different for each

message. However, by unifying those flag to one we can more reusable code in client

side. Because the size of flag in THINC header is suitable to unify the flag, I propose

unifying flag option in Table 7 into Table 8.

/* flags */ /* order */
#define T_FB_RUPDATE_COMPRESSED 0x01 /* 3 */
#define T_FB_RUPDATE_RESIZED 0x02 /* 2 */
#define T_FB_RUPDATE_CACHED 0x04 /* 1 */
#define T_FB_RUPDATE_ADDCACHE 0x08 /* 1 *

#define T_FB_PFILL_RESIZED 0x01
#define T_FB_PIXMAP_CACHED 0x02
#define T_FB_PIXMAP_ADDCACHE 0x04

/* flags for glyph and bilevel */
#define T_FB_BITMAP_CACHED 0x01 /* 1 */
#define T_FB_BITMAP_ADDCACHE 0x02 /* 1 */
#define T_FB_BITMAP_RESIZED 0x04

Table 7 Previous design of THINC frame buffer flags

/* flags */ /* order */
#define T_FB_COMPRESSED 0x01 /* 3 */
#define T_FB_RESIZED 0x02 /* 2 */
#define T_FB_CACHED 0x04 /* 1 */
#define T_FB_ADDCACHE 0x08 /* 1 *

Table 8 Revised design of THINC frame buffer flags

7.2.2. Resized frame buffer messages.

In resized frame buffer messages, the client should calculate the new coordination of

each message. However, because calculation result is not as same as different

implementation, I suggest that the server sends resized x, y, width rather than original

coordinates. Current implementation for each resized frame buffer operation is in Table

9.

 - 28 -

Copy

Pixmap

Solid

Bitmap

Video

Client should calculate resized x, y,

width and height

RawUpdate Client should calculate resized x and y

Table 9 resized calculation from THINC client

If everything in Table 9 is resized, the client could draw same image no matter what

kind of language the THINC client is implemented by.

7.4. Audio Stream

I have not tested my audio because of lack of supporting server environment. However,

I heard that audio stream only have one uncompressed stream type. By adding another

compressed stream type for sound, the bandwidth for audio stream over the network

can be solved somehow. Even though it is only proposal and does not have specific

implementation of compressed stream type, it can be solved by adding one type

specifier in struct thinc_sndOpen. I propose some specifier(flags) for each type in struct

thinc_sndOpen in Table 9, which enables sound play in another type.

typedef struct thinc_sndOpen_s {
int type :8;

 /* for synchronization */
 int rate :16;
 int bits :8;
 int channels :8;
 int endian :8;
 char pad[2];
} thinc_sndOpen;

#define T_SND_OPEN_SIZE 6

/* flags in type*/
#define T_SND_TYPE_WAV 0x01
#define T_SND_TYPE_MP3 0x02

Table 10 Revising THINC sound

By using ACK or NAK messages provided by THINC Protocol, the client simply denies

or accepts following format. And then server tries to send same stream by using same

format, or we can make some negotiation stages just like handshake in THINC Client.

 - 29 -

Appendix A. References

THINC Protocol specification, Ricardo Barrato and Leo Kim

From Java Community Process Program (http://jcp.org)

JSR 30: J2ME Connected, Limited Device Configuration, Antero Taivalsaari

JSR 36: Connected Device Configuration, Jon Courtney

JSR 37: Mobile Information Device Profile for the J2ME Platform, Mark VandenBrink

 - 30 -

Appendix B.

implementation note

for THINC Client in JAVA

(javadoc for THINC Client)

Postscript: Because THINC Client has huge amount of javadoc, I attached Tree of the

javadoc only in here. You can see the entire javadoc in doc directory of source code.

 - 31 -

