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Abstract
Quasi-identifier-based deidentification techniques (QI-
deidentification) are widely used in practice, including
k-anonymity, `-diversity, and t-closeness. We present three
new attacks on QI-deidentification: two theoretical attacks
and one practical attack on a real dataset. In contrast to prior
work, our theoretical attacks work even if every attribute is a
quasi-identifier. Hence, they apply to k-anonymity, `-diversity,
t-closeness, and most other QI-deidentification techniques.

First, we introduce a new class of privacy attacks called
downcoding attacks, and prove that every QI-deidentification
scheme is vulnerable to downcoding attacks if it is minimal
and hierarchical. Second, we convert the downcoding attacks
into powerful predicate singling-out (PSO) attacks, which
were recently proposed as a way to demonstrate that a privacy
mechanism fails to legally anonymize under Europe’s General
Data Protection Regulation. Third, we use LinkedIn.com to
reidentify 3 students in a k-anonymized dataset published by
EdX (and show thousands are potentially vulnerable), under-
mining EdX’s claimed compliance with the Family Educa-
tional Rights and Privacy Act.

The significance of this work is both scientific and political.
Our theoretical attacks demonstrate that QI-deidentification
may offer no protection even if every attribute is treated as a
quasi-identifier. Our practical attack demonstrates that even
deidentification experts acting in accordance with strict pri-
vacy regulations fail to prevent real-world reidentification. To-
gether, they rebut a foundational tenet of QI-deidentification
and challenge the actual arguments made to justify the con-
tinued use of k-anonymity and other QI-deidentification tech-
niques.
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1 Introduction

Quasi-identifier-based deidentification (QI-deidentification)
is widely used in practice. The most well known QI-
deidentification techniques are is k-anonymity [26]. Through-
out this work we usually speak about k-anonymity specifically,
but everything applies without modification to `-diversity [18],
t-closeness [17], and many other QI-deidentification refine-
ments.

A relatively small number of data points suffice to distin-
guish individuals from the general population. For example,
in the 2010 census 44% of the population was unique based
only on census block, age, and sex [1]. Turning this insight
into a privacy notion, k-anonymity aims to capture a sort of
anonymity of a crowd.

A data release is k-anonymous if any individual row in the
release cannot be distinguished from k−1 other individuals
in the release using certain attributes called quasi-identifiers.
Quasi-identifiers are sets of attributes that are potentially avail-
able to an attacker from other sources, combinations of which
may uniquely distinguish an individual within the dataset. k-
anonymity requires that the equivalence class of every record—
the set of records with identical quasi-identifiers—is of size
at least k ≥ 2. A common choice for k is 5.1 `-diversity, t-
closeness, and many QI-deidentification techniques refine
k-anonymity in the sense that they collapse to k-anonymity
when every attribute is treated as a quasi-identifier (Sec. 2.1).

Real world reidentification attacks, including on the Net-
flix and AOL datasets [4, 20], led to a policy debate about
the QI-deidentification. Critics argued that the distinction
between quasi-identifying attributes and other attributes—
foundational to the whole approach—was untenable [21, 22].
Defenders argued that deidentification experts are good at
determining what information is externally available [5, 6].

1For example, U.S. Department of Education’s FAQ on disclosure avoid-
ance states that “statisticians consider a cell size of 3 to be the absolute
minimum although larger minimums (e.g., 5 or 10) may be used to further mit-
igate disclosure risk” (https://studentprivacy.ed.gov/resources/
frequently-asked-questions-disclosure-avoidance). Based on
this language, EdX chose k = 5.

https://studentprivacy.ed.gov/resources/frequently-asked-questions-disclosure-avoidance
https://studentprivacy.ed.gov/resources/frequently-asked-questions-disclosure-avoidance


The debate left unspoken and unexamined the core tenet of
QI-deidentification: that if every attribute is treated as a quasi-
identifier, then k-anonymity provides meaningful protection.
Our work is the first to directly challenge that tenet.

Motivation Why bother attacking QI-deidentification? Af-
ter all, the security and privacy research communities don’t put
much stock in these techniques. For example, it is well known
that contrived mechanisms can formally satisfy k-anonymity
but provide no protection. Even so, many policymakers and
practitioners are convinced that QI-deidentification is effec-
tive in the real world.

Our goal in this paper is to rebut the actual arguments that
QI-deidentification practioners use to justify its continued
use. We rebut three arguments that—until this work—have
gone unchallenged. First, that no attacks have been shown
against datasets deidentified by experts and in accordance
with strict privacy regulations, let alone simple attacks. Sec-
ond, that k-anonymity provides meaningful protection when
every attribute is a quasi-identifier. Third, that although QI-
deidentification doesn’t meet cryptographic standards of se-
curity, it suffices to meet the obligations in data protection
regulation. We briefly elaborate these three arguments next.

Rhetorically, trust in QI-deidentification hinges on the
wholesale dismissal of existing attacks as unconvincing. Prac-
titioners dismiss many attacked datasets as “improperly de-
identified” [6]. “Proper de-identification” must be done by a
“statistical expert” and in accordance with procedures out-
lined in regulation [12], the increasing availability of QI-
deidentification software notwithstanding. This argument has
proven very effective in policy spheres. Moreover, practition-
ers dismiss attacks carried out by privacy researchers because
they are privacy researchers. That these attacks are published
in “research based articles within the highly specialized field
of computer science” is used to argue that re-identification
requires a “highly skilled ‘expert’ ” and therefore is of little
concern [5].

Technically, trust in QI-deidentification hinges on an un-
spoken, unexamined tenet:

QI-deidentification’s tenet: If every attribute is
treated as quasi-identifying, then k-anonymity pro-
vides meaningful protection.

Treating every attribute as quasi-identifying defines away
one major critique of QI-deidentification—namely, that the
ex ante categorization of attributes as quasi-identifying or
not is untenable and reckless. Moreover, when all attributes
are quasi-identifying, the distinctions among k-anonymity, `-
diversity, and t-closeness collapse (Section 2.1). Prior attacks
against k-anonymity fail in this setting.

Legally, the use of QI-deidentification hinges on the gap be-
tween the protection required by regulation and the protection
desired by the academic research community. Practitioners
claim only that QI-deidentification meets regulatory standards,

not security researchers’ stringent standards. For example,
cryptographic security definitions typically make no assump-
tions about the techniques or auxiliary knowledge available to
an adversary. However, the European Union’s General Data
Protection Regulation (GDPR) restricts the adversary’s tech-
niques by protecting only against “means reasonably likely to
be used” by an attacker.2 Likewise, the United State’s Family
Educational Rights and Privacy Act (FERPA) restricts the
adversary’s knowledge by protecting only against an attacker
lacking “personal knowledge of the relevant circumstances.”3

Contributions We present three attacks on QI-
deidentification schemes: two theoretical attacks and
one real world reidentification attack. Together, these attacks
undermine the above justifications for the continued use of
QI-deidentification.

First, we introduce a new class of privacy attack called
downcoding, which recovers large fractions of the data hid-
den by QI-deidentification without any auxiliary knowledge.
In short, downcoding undoes hierarchical generalization. A
downcoding attack takes as input a dataset generalized and
recovers some fraction of the generalized data. We call this
downcoding as it corresponds to recoding records down a
generalization hierarchy.

We prove that every QI-deidentification scheme is vul-
nerable to downcoding attacks if it is minimal and hier-
archical. QI-deidentification is hierarchical if it works by
generalizing attributes according to a fixed hierarchy (e.g.,
city→country→continent). QI-deidentification is minimal if
no record is generalized more than necessary to achieve the
privacy requirement, in a weak, local sense. Our downcod-
ing attacks are powered by a simple observation: minimality
leaks information. Figures 1 and 2 give simple examples of
downcoding and of leakage from minimality, respectively.

Second, we convert our downcoding attacks into power-
ful predicate singling-out (PSO) attacks. PSO attacks were
recently proposed as a way to demonstrate that a privacy
mechanism fails to legally anonymize under the GDPR [2, 7].
We introduce a stronger type of PSO attack called com-
pound PSO attacks and prove that minimal hierarchical QI-
deidentification enables compound PSO attacks, greatly im-
proving over the prior work.

Our downcoding and PSO attacks are the first attacks on
QI-deidentification that work even when every attribute is a
quasi-identifier. As such, they apply to QI-deidentification
beyond k-anonymity, and refute the foundational tenet of QI-
deidentification.

Third, we used LinkedIn.com to reidentify 3 students in a
k-anonymized dataset published by Harvard and MIT from
their online learning platform EdX. Despite being “prop-
erly” k-anonymized by “statistical experts” in accordance

2GDPR, Article 4
334 CFR §99.3



with FERPA, we show that thousands more students are po-
tentially vulnerable to reidentification and disclosure.

Not only do these attacks rebut the arguments described
above, they also show that QI-deidentification fails to sat-
isfy three properties of a worthwhile measure of privacy of a
computation, even without resorting to contrived mechanisms.
Namely, we show that QI-deidentification mechanisms used
in practice aren’t robust to post-processing, do not compose,
and rely on distributional assumptions on the data for their
security.

Organization Section 2 discusses related work. Section 3
introduces notation and defines k-anonymity, along with
hierarchical and minimal k-anonymity. Section 4 defines
downcoding attacks and proves that minimal hierarchical k-
anonymous mechanisms enable them. Section 5 defines com-
pound predicate singling-out attacks and proves that minimal
hierarchical k-anonymous mechanisms enable them. Section 6
describes the EdX dataset and shows that it is vulnerable to
reidentification. Section 7 concludes that our attacks rebut the
three core arguments that support the continued use of QI-
deidentification in practice. The appendix includes additional
details and proofs.

2 Related Work

Samarati and Sweeney proposed k-anonymity for statisti-
cal disclosure limitation in 1998 [25–27]. As new attacks
were discovered, k-anonymity gave rise to more refined QI-
deidentification techniques including `-diversity, t-closeness,
and many others (below).

Samarati was the first to study minimality for k-anonymity
[25]. Our downcoding attacks build on prior work on minimal-
ity attacks [8, 28]. These works demonstrate that minimality
can be used to infer sensitive attributes and violate `-diversity,
but not k-anonymity. They introduce two defenses against
their attacks. One is yet another refinement of k-anonymity
called m-confidentiality [28]. The second claims that cer-
tain anonymization algorithms offer protection for free (i.e.,
“methods which only inspect the QI attributes to determine
the [equivalence classes]”) [8]. In contrast, we use minimality
to downcode, a new attack that violates k-anonymity itself
and that defeats both defenses from prior work.

Predicate singling-out (PSO) attacks were recently intro-
duced in the context of data anonymization under Europe’s
General Data Protection Regulation (GDPR) [7]. They were
proposed as a mathematical test to show that a privacy mech-
anism fails to legally anonymize data under Europe’s General
Data Protection Regulation (GDPR) [2, 7]. The prior work
gives a simple but weak PSO attack against a large class of k-
anonymous mechanisms. We give much stronger PSO attacks
against a restricted class of k-anonymous mechanisms.

Prior work shows that k-anonymity does not compose: mul-
tiple k-anonymous datasets can completely violate privacy
when combined [13]. We show for the first time that compo-
sition failures can occur in real world uses of k-anonymity.

Differential privacy (DP) [11] presents one alternative to
QI-deidentification, especially DP synthetic data [16] or local
DP [10]. Switching to DP requires accepting that the resulting
data will not provide the one-to-one correspondence with un-
derlying records that makes QI-deidentification so attractive
to users and laypeople.

2.1 Syntactic de-identification beyond k-
anonymity

We reviewed the deidentification definitions included in the
most comprehensive survey we could find [14]. Our downcod-
ing attacks apply to any refinement of k-anonymity: namely,
any definition that collapses to k-anonymity when every at-
tribute is quasi-identifying. These include:

• k-anonymity and variants: km-, (α,k)-, p-sensitive-,
(k, p,q,r)-, and (ε,m)-anonymity
• `-diversity and variants: entropy-, recursive-, disclosure-

recursive, multi-attribute-, `+-, and (c, `)-diversity
• t-closeness and variant (n, t)-closeness
• m-invariance, m-confidentiality

Our downcoding attacks don’t apply to Anatomy (which
doesn’t generalize quasi-identifiers at all) or differential pri-
vacy (which eschews the quasi-identifier framework all to-
gether). We have not determined whether the following defi-
nitions – which bound some posterior probability given the
deidentified dataset – refine k-anonymity in the relevant sense:
δ-presence, ε-privacy, skyline privacy, (ρ1,ρ2)-privacy, (c,k)-
safety, and ρ-uncertainty.

We leave testing our downcoding attacks on actual dei-
dentification software packages for future work. Free to use
software packages include ARX Anonymization, µ-Argus,
sdcMicro, University of Texas Toolkit, Amnesia, Anonima-
tron, Python Mondrian. All but Python Mondrian implement
hierarchical algorithms. ARX Anonymization, sdcMicro, and
Amenesia offer some version of local recoding (footnote 5).
To the best of our knowledge, none guarantee minimality.

3 Preliminaries

3.1 Notation
Generally, fixed parameters are denoted by capital letters (e.g.,
number of dimensions D) and indices use the corresponding
lowercase letter (e.g., d = 1, . . . ,D). For a,b ∈ N, let [a,b] =
{a,a+1, . . . ,b} and [b] = [1,b].

UD is a D-dimensional data universe, where U is the at-
tribute domain. For simplicity we take all attribute domains



X =

ZIP Income COVID

91010 $125k Yes
91011 $105k No
91012 $80k No
20037 $50k No
20037 $20k No
20037 $25k Yes

Y =

ZIP Income COVID

9101? $75–150k ?
9101? $75–150k ?
9101? $75–150k ?
20037 $0–75k ?
20037 $0–75k ?
20037 $0–75k ?

Z =

ZIP Income COVID

91010 $125–150k ?
9101? $100–125k ?
9101? $75–150k ?
20037 $0–75k No
20037 $0–75k ?
20037 $25k Yes

Figure 1: An example of downcoding. Y is a minimal hierarchical 3-anonymized version of X (treating every attribute as part
of the quasi-identifier and leaving the generalization hierarchy implicit). Z is a downcoding of Y: it generalizes X and strictly
refines Y.

Old Rich

1 1
0 0
1 0
0 0

Old Rich

F1 F5

F2 F6

F3 0
F4 0

Old Rich

1 F7

0 0
1 F8

0 0

Figure 2: An example of minimality and inferences from
minimality. Attributes are binary and F= {0,1}. The middle
and right datasets are both minimal hierarchical 2-anonymous
versions of the left dataset with respect to Q = {Old, Rich}.
The right dataset is also globally optimal: it generalizes as
few attributes as possible. Minimality implies that every pair
of redacted entries in the same column in matching rows
must contain both a 0 and 1. Hence, {F1,F2}= {F3,F4}=
{F5,F6}= {F7,F8}= {0,1}, allowing downcoding. Only
one bit of information does not follow directly from minimal-
ity of the middle table: whether or not F1 =F5.

to be identical, though in reality they are usually distinct (e.g.,
the EdX dataset).

A record x = (x1, . . . ,xD) is an element of the data uni-
verse. A generalized record y, denoted (y1, . . . ,yD), is a sub-
set of the data universe specified by the Cartesian product
y1 × ·· · × yD, where yd ⊆ U for every d ∈ [D]. Note that
a record x naturally corresponds to the generalized record
({x1}, . . . ,{xD}), a singleton. We say y generalizes x if x ∈ y
(i.e., ∀d, xd ∈ yd). For example, y = (Female,1970–1975)
generalizes x = (Female,1972). For generalized records
z⊆ y, we say that y generalizes z and z refines y. If z ( y, the
generalization/refinement is strict.

A dataset X is an N-tuple of records (x1, . . . ,xN). X can
be viewed as a matrix with Xn,d the dth coordinate of xn. A
generalized dataset Y is an N-tuple of generalized records
(y1, . . . ,yN). For (generalized) datasets Y,Z, we write Z� Y
if zn ⊆ yn for all n. We extend the meaning of generalization
and refinement accordingly. We write Z≺Y when at least one
containment is strict. We call yn the record in Y corresponding
to zn, and vice-versa. Note that� is a partial order on datasets
of N records from a given data universe.4

4More generally, we could consider datasets whose rows are permuted rel-

3.2 k-anonymity

Formally, Y is k-anonymous if any individual row in the
release cannot be distinguished from k− 1 other individu-
als [26]. This requirement is typically parameterized by a
subset Q of the attribute domains Q ⊆ {Ud}d∈[D] called a
quasi-identifier. We denote by y(Q) the restriction of y to Q.
For Y = (y1, . . . ,yN), we denote by I(Y,y,Q), {n : yn(Q) =
y(Q)} the indices of records in Y that match y on Q (includ-
ing y itself). Let EA(Y,y,Q) = |I(Y,y,Q)|. This is called the
effective anonymity of y in Y with respect to Q.

Definition 3.1 (k-anonymity). For k ≥ 2, Y is k-anonymous
with respect to Q if for all y ∈ Y, EA(Y,y,Q)≥ k. An algo-
rithm M : X 7→ Y is k-anonymizer if for every X, Y←M(X)
is k-anonymous (anonymity) and generalizes X (correctness).
We omit Q when Q = UD is the whole data universe.

A few remarks are in order. First, beyond correctness and
anonymity, k-anonymity places no restriction on the output
Y. Second, the term quasi-identifier is inconsistently defined
in the literature. Our definition of a quasi-identifier as the
collection of multiple attributes is from Sweeney [27]. Quasi-
identifier is commonly used to refer to one of the constituent
attributes—including by the authors of the EdX dataset [19].
So each [27]-quasi-identifier consists of multiple [19]-quasi-
identifers. We adopt the quasi-identifier-as-a-set definition
because it simplifies the discussion of the EdX dataset in
Section 6. The distinction disappears in Sections 4 and 5: our
downcoding and PSO attacks work even when every attribute
is part of the quasi-identifier (i.e., Q = UD).

3.2.1 Hierarchical k-anonymity

It is easy to contrive k-anonymizers that reveal X completely.
Directing our attention to more natural and widespread mech-
anisms, we focus on hierarchical k-anonymizers.

ative to one another. Define Z�Y if there exists a permutation π : [N]→ [N]
such that zn ⊆ yπ(n) for all n, choosing some canonical π arbitrarily if more
than one exists. Then � is a partial order over equivalence classes of datasets
induced by Y∼Y′ ⇐⇒ ∃π ∀n yn = y′

π(n). We omit this additional complex-
ity for clarity. We believe all our results would hold, mutatis mutandis.



A common way of k-anonymizing data is to generalize
an attribute domain U according to a data-independent gen-
eralization hierarchy H which specifies how a given at-
tribute may be recoded.5 Many natural ways of general-
izing data fits this mold: using nesting geographies (e.g.,
city→state→country); dropping digits of postal codes (e.g.,
91011→ 9101?→ 910??); grouping ages into ranges of 5,
10, 25, or 50 years; suppressing attributes or whole records
altogether; and the techniques used to create the EdX dataset.

Formally, a generalization hierarchy H defines a structured
collection of permissible subsets y of an attribute domain U
(Figure 5). H is a rooted tree labelled by subsets of U, where
the subsets on any level of H form a partition of U and the
partition on every level is a strict refinement of the partition
above. The label of the root is U itself, and the leaves are
all labelled with singletons {x}. Identifying H with the set
of all its labels, we write y ∈ H if there is some node in H
labelled by y. We extend the hierarchy H to the data universe
UD coordinate-wise, writing y ∈HD if yd ∈H for all d ∈ [D].

Definition 3.2 (Hierarchical k-anonymity). Y respects H if
y ∈ HD for all y ∈ Y. An algorithm M : (X,H) 7→ Y is a
hierarchical k-anonymizer if for all X and all hierarchies H,
MH : X 7→ M(X,H) is a k-anonymizer and its output Y =
M(X,H) respects H.

Observe that one can always implement hierarchical k-
anonymity by simply outputting N copies of UD. But a pri-
vacy technique that completely destroys the data is not useful,
which leads us to consider data quality.

We consider minimal mechanisms [25]. A mechanism is
minimal if no record is generalized more than necessary to
achieve the privacy requirement (in a local way). For example,
suppose a k-anonymous Y contains a location attribute. If
there is a subset of records whose location “USA” can be
changed to “California” without violating k-anonymity, then
the mechanism that produced Y would not be minimal. Anoter
example is given in Figure 2. We call this property minimality
because it is equivalent to requiring minimality with respect
to the partial ordering�. Unlike global optimality, minimality
is computationally tractable.

Definition 3.3 (Hierarchical minimality). M : (X,H) 7→ Y is
minimal if Y is always minimal in the set of all H-respecting,
k-anonymous Y that generalize X, partially ordered by �.
That is, for all strict refinements Z ≺ Y, either: (a) Z is not
k-anonymous, (b) Z does not respect H, or (c) Z does not
generalize X.

5 Hierarchical algorithms differ on whether they use local recoding or
global recoding. Using local recoding, attributes in different records can be
generalized to different levels of the hierarchy. Using global recoding, all
records must use the same level in the hierarchy for any given attribute. We
consider local recoding which produces higher quality datasets in general.

4 Downcoding attacks on syntactic privacy
techniques

We study a new class of attacks on hierarchical k-anonymity
called downcoding attacks and prove that all minimal hi-
erarchical k-anonymizers are vulnerable to downcoding at-
tacks. Our downcoding attacks are powerful yet computation-
ally straightforward. The attacks apply as is to `-diversity,
t-closeness, and the many QI-deidentification techniques in
Section 2.1. They demonstrate that even when every attribute
is treated as a quasi-identifier, any privacy offered by QI-
deidentification depends on unstated distributional assump-
tions about the dataset.

4.1 Overview
In short, downcoding undoes hierarchical generalization. A
downcoding attack takes as input a dataset generalized and
recovers some fraction of the generalized data. We call this
downcoding as it corresponds to recoding records down a
generalization hierarchy. Our downcoding attacks are pow-
ered by a simple observation: minimality leaks information.
Figures 1 and 2 give simple examples of downcoding and of
leakage from minimality, respectively.

We prove that there exist data distributions and hierarchies
such that every minimal hierarchical k-anonymizer is vulner-
able to downcoding attacks. Hence any privacy provided by
QI-deidentification is subject to distributional assumptions.

The downcoding attack adversary A gets as input a QI-
deidentified dataset Y which is the output of an unknown
mechanism M on an unknown dataset X. A also knows any-
thing published with Y, namely N, k, and the hierarchy H.
(Without H data users would be unable to interpret Y.) Finally
we also allow the adversary to depend on the data distribution
U . One interpretation is that the security that a mechanism
affords against downcoding attacks depends on limiting the
attacker’s knowledge, which is not good security practice.
Moreover, in many settings U can be efficiently learned from
an independent sample X′.

Formally, we construct a distribution U over ω(logn) at-
tributes and a generalization hierarchy H such that every min-
imal hierarchical algorithm enables downcoding attacks on
datasets drawn i.i.d. from U . Our first attack uses a natural
data distribution (i.e., clustered heteroskedastic data in Sec-
tion 4.4) and a tree-based hierarchy, and allows an attacker
to completely recover a constant fraction of the deidentified
records with high probability. Our second attack uses a less
natural data distribution and hierarchy, and allows an attacker
to recover 3/8ths of every record with 99% probability.

Even with the assumptions on M and the knowledge of A,
our attacks are far more general that typical attacks against
QI-deidentification. For example, the attacks that motivated
t-closeness as a refinement of `-diversity don’t even apply to
a single well-defined mechanism [17]. They show only that it



is possible for a mechanism to produce `-diverse outputs that
are vulnerable. In contrast, we show attacks on a large and
well-defined class of mechanisms. Moreover, our attacks work
against all QI-deidentification definitions simultaneously, not
any one alone.

4.2 Definition
Let Y be a k-anonymous version of a dataset X with respect
to generalization hierarchy H. A downcoding attack takes Y
as input and outputs a strict refinement Z of Y that simultane-
ously respects H and generalizes X.

Definition 4.1 (Downcoding attack). Let Y be a hierarchical
k-anonymous generalization of a (secret) dataset X with re-
spect to some hierarchy H. Z is a downcoding of Y if X� Z,
Z≺ Y, and Z ∈ H.

Observation 4.1. If Y is minimal and Z is a downcoding of
Y, then Z violates k-anonymity.

We consider three measures of an attack’s strength: How
many records are refined? How much are records refined?
How often records refined? Recall that if Z≺Y, then zn ⊆ yn
for all n and zn ( yn for at least one n.

∆N : How many records are refined? For ∆N ∈ N, we write
Z ≺∆N Y if there exist at least ∆N distinct n for which
zn ( yn. That is, Z strictly refines at least ∆N records in
Y. An attacker prefers larger ∆N .

∆D: How much are the records refined? For ∆D ∈ N, we
write z (∆D y if there exist at least ∆D distinct d for which
zd ( yd . We write Z ≺∆D Y if zn ( yn =⇒ zn (∆D yn.
That is, either zn = yn or it zn strictly refines yn along at
least ∆D dimensions. An attacker prefers larger ∆D.

k:6 How often are records refined? Consider the probability
experiment X∼UN , Y←M(X,H), and Z←A(Y) where
U is a distribution over data records, M is a k-anonymizer,
and A is a downcoding adversary. k(∆N ,∆D) ∈ [0,1] is
the probability that Z downcodes with parameters at least
∆N and ∆D. For any fixed ∆N and ∆D, an attacker prefers
larger k.

4.3 Minimal k-anonymizers enable downcod-
ing attacks

Downcoding may seem impossible: How can one strictly
refine Y using only the information contained in Y itself?
Our attacks leverage minimality. The mere fact that Y is a
minimal hierarchical generalization of X reveals more infor-
mation about X that we use for strong downcoding attacks.
See Figure 2 for a simple example.

A general-purpose hierarchical k-anonymizer M works for
every generalization hierarchy H. Our theorems state that

6k is pronounced “dah-let” and is the fourth letter of the Hebrew alphabet.

there exist data distributions U and corresponding hierarchies
H such that every minimal hierarchical k-anonymizer M is
vulnerable to downcoding. By Observation 4.1, these attacks
defeat the k-anonymity of M.

Theorem 4.2. For all k ≥ 2, D = ω(logN), there exists
a distribution U over RD, and a generalization hierarchy
H such that all minimal hierarchical k-anonymizers M en-
able downcoding attacks with ∆N = Ω(N), ∆D = 3D/8, and
k(Ω(N),3D/8)> 1−negl(N).

Theorem 4.3. For all constants k ≥ 2, α > 0, D = ω(logN),
and T = dN2/αe, there exists a distribution U over UD =
[0,T ]D, and a generalization hierarchy H such that all min-
imal hierarchical k-anonymizers M enable downcoding at-
tacks with ∆N = N, ∆D = D, and k(N,D)> 1−α. The attack
also works for k = N and D = ω(N logN).

Each of the theorems has some advantages over the other.
The attacker in Theorem 4.3 manages to recover every at-
tribute of every record x ∈ X except with probability α. How-
ever the parameters of the construction depend polynomially
on 1/α. Theorem 4.2 removes this dependency, at the expense
of attacking only a constant fraction of records and attributes—
still a serious failure of k-anonymity. The more significant
advantage of Theorem 4.2 is that the data distribution and
generalization hierarchy are both very natural (Example B.2).
In contrast, the distribution and hierarchy in the proof of The-
orem 4.3 are more contrived.

Full proofs of both Theorems 4.2 and 4.3 are in Ap-
pendix B. Both proofs follow the same structure at a very high
level. We prove a structural result on minimal, hierarchical
k-anonymous mechanisms for a specially constructed hierar-
chy H (Claims B.1 and B.3). This structural result states that
if X satisfies certain conditions then Y must take a restricted
form which allows the downcoding adversary to construct
Z. To prove the theorem, we construct a data distribution U
such that random X ∼UN will satisfy the conditions of the
structural result with probability close to 1.

4.4 Example: Clustered Gaussians
The proof of Theorem 4.2 shows that distributions satisfy-
ing certain properties are vulnerable to downcoding attacks.
Example B.2 describes a family of clustered Gaussian distri-
butions that satisfy those properties. Here we give an instanti-
ation of this family of distributions for k = 10 and describe
the corresponding hierarchy and downcoding adversary.

We sample N = 100 records x i.i.d. as follows. Pick
size = big with probability 1/10, and size = sml otherwise.
Pick a cluster t ∈ {1, . . . ,10} uniformly at random. Sample
each attribute of x i.i.d. from the cluster centered at ct = 130t
depending on size: If size= sml sample from N(ct ,1) distri-
bution. If size= big sample from the N(ct ,100).

The hierarchy H consists of the interval [A1,A11) subdi-
vided into intervals [At ,At+1). As depicted in Figure 3, each



[At ,At+1) is further subdivided into [Bt ,Dt) and its comple-
ment [At ,Bt)∪ [Dt ,At+1). The key property is that half of the
mass of N(0,100) lies in the corresponding interval [Bt ,Dt).
For the above parameters: At = ct − 65, Bt = ct − 6.6, and
Dt = ct +6.6.

The adversary A is described in Algorithm 1. It takes as
input Y, k, and a description of H. It looks at each group of
generalized records Ŷt of the output. If the number of records
in Ŷt is not k, then the whole group of records is copied to the
output Z unchanged (i.e., no downcoding on these records). If
Ŷt has exactly k records, then by k-anonymity these records
are all identical copies of some yt . Some of yt ’s entries may be
aggregated to [At ,At+1). If it’s many more or many less than
half the entries, then the whole group of records is copied
to the output Z unchanged (i.e., no downcoding on these
records). Otherwise, the k records in Ŷt all get downcoded as
described in the algorithm.

It follows from Example B.2 that for k= 10, the distribution
described above, and Y produced by any minimal hierarchical
k-anonymizer, A will downcode a constant fraction of the
records in Y (with constant probability).

Algorithm 1: Adversary A for the example in Sec-
tion 4.4 (see also Fig. 3).
Data: Y, k
Result: Z
for cluster t = 1, . . . ,T do

Let Ŷt be the records with an entry in [At ,At+1);
if |Ŷt | 6= k then

Copy every y ∈ Ŷt into Z;
continue;

/* Ŷt is k exact copies of some yt */
bigt ←{d : yt

d = [At ,At+1]};
bt ← |bigt |;
if |bt −D/2|> D/8 then

Write k copies of yt to Z;
else

Write k−1 copies of [Bt ,Dt ] to Z;
Write zt to Z, where

zt
d =

{
[Bt ,Dt) d 6∈ bigt

[At ,Bt)∪ [Di,Ai+1) d ∈ bigt

5 Predicate singling-out attacks on syntactic
privacy techniques

Our downcoding attacks yield powerful predicate singling-
out (PSO) attacks against minimal hierarchical k-anonymous
mechanisms. PSO attacks were recently proposed as a
way to demonstrate that a privacy mechanism fails to

legally anonymize under Europe’s General Data Protection
Regulation [2, 7]. Our new attacks undermine the use k-
anonymity and other QI-deidentification techniques for GDPR
compliance, challenging prevailing European guidance on
anonymization [23].

In this section, we recall the prior work on PSO attacks
and define a generalization called compound PSO attacks.
We prove that minimal hierarchical k-anonymizers enable
compound PSO attacks.

5.1 Background on PSO attacks

Predicate singling-out attacks were recently introduced by
Cohen and Nissim in the context of data anonymization under
Europe’s General Data Protection Regulation (GDPR) [7].
They were proposed as a mathematical test to show that a
privacy mechanism fails to legally anonymize data under
GDPR [2, 7]. A mechanism M legally anonymizes under
GDPR if it suffices to transform regulated personal data into
unregulated anonymous data. That is, if M(X) is free from
GDPR regulation regardless of what X is. If a mechanism
enables PSO attacks, then it does not legally anonymize under
GDPR [2].

Informally, M enables PSO attacks if given M(X), an ad-
versary is able to learn an extremely specific description ψ

of a single record in X. Because ψ is so specific, it not only
distinguishes the victim in the dataset X, but likely also in
the greater population. Hence PSO attacks can be a stepping
stone to more blatant attacks.

Formally, we consider a dataset X = (x1, . . . ,xn) sampled
i.i.d. from distribution U over universe UD. The PSO ad-
versary A is a non-uniform probabilistic Turing machine
which takes as input M(X) and produces as output a pred-
icate ψ : UD → {0,1}. ψ isolates a record in a dataset X
if there exists a unique x ∈ X such that ψ(x) = 1. Equiva-
lently, if ψ(X) = ∑x∈X ψ(x)/n = 1/n. The strength of a PSO
attack is related to the weight of the predicate ψ output by
A: ψ(U) , E(ψ(x)) for x ∼U . We simplify the definitions
from [7] to their strongest setting: where ψ(U)< negl(n).

To perform a PSO attack, A outputs a single negligible-
weight predicate ψ that isolates a record x ∈ X with non-
negligible probability.

Definition 5.1 (Predicate singling-out attacks (simplified)
[7]). M enables predicate singling-out (PSO) attacks if there
exists U , A, and β(n) non-negligible such that

Pr
X←Un

ψ←A(M(X))

[ψ(X) = 1/n∧ψ(U)< negl(n)]≥ β(n).

Cohen and Nissim give a simple PSO attack against a
large class of k-anonymizers which they call bounded. A k-
anonymizer is bounded if there is some maximum kmax such
that for all X, the effective anonymity of every row of Y is at



Figure 3: The marginal distribution of each attribute for the example described in Section 4.4 (depicting 3 of 10 clusters, not to
scale). A key property is that half of the mass of the t th blue dotted distribution lies in the interval [Bt ,Dt).

most kmax. The attacker outputs L = O(N) disjoint negligible-
weight predicates ψ. If M is bounded, each ψ isolates a row
in X with probability about η/e� 0 independently, where
η ∈ [0,1] is a parameter that depends on M and U .

5.2 Compound predicate singling-out attacks
PSO attacks can be unsatisfying. For example, the attack
from [7] outputs L predicates and at best about L/e man-
age to actually isolate a record in the dataset X. Moreover,
which predicates isolate and which don’t is impossible for
the attacker to know without additional information. So even
though there exists many isolated records with high probabil-
ity, the attacker doesn’t know which ones or how many. In
contrast, consider an attacker that outputs L = N predicates,
each of which isolates a distinct record in X. It is obvious the
new attacker is stronger, but in a way that isn’t captured by
the definition of predicate singling-out.

We define a generalization of PSO attacks called compound
PSO attacks. Whereas PSO attacks only require that a record
is isolated with non-negligible probability, compound PSO
attacks require many records to be isolated often.

To perform a compound PSO attack, A outputs multiple
negligible-weight predicates Ψ = {ψ1, . . . ,ψL} each of which
isolates a distinct record x ∈ X with probability at least 1−α.
The strength of the attack is measured by L and α, with L→ n
and α→ 0 reflecting stronger attacks. Vanilla PSO attacks
correspond to the setting L = 1 and α = 1−β.

Definition 5.2 ((α,L)-compound-PSO attacks). M enables
(α,L)-compound predicate singling-out attacks if there exists
U , A such that

Pr
[
∀ψ,ψ′ ∈Ψ :

ψ(X) = 1/n∧ψ(U)< negl(N)
∧(ψ∧ψ′)(U) = 0∧|Ψ| ≥ L

]
≥ 1−α(N)

in the probability experiment X∼UN , Ψ← A(M(X)).

In the language of compound attacks, the prior work gives
an (1−O(e−L),L)-compound-PSO attack against bounded
k-anonymizers for L < cN and some c > 0.

Our compound PSO attacks are much stronger. Theo-
rem 5.1 gives a (negl(N),Ω(N))-compound-PSO attack, and
Theorem 5.2 gives a (poly(1/N),N)-compound-PSO-attack.
In both attacks, the adversary fails only if the dataset X is atyp-
ical in some way. If the dataset is typical, the compound PSO

attack always succeeds regardless of what the mechanism
M does. The tradeoff is that our new attacks only work on
minimal hierarchical k-anonymizers (instead of all bounded
k-anonymizers) and with more structured data distributions
U (instead of any U with moderate min-entropy).

Theorem 5.1. For all k ≥ 2, D = ω(logN), there exist
a distribution U over RD, a generalization hierarchy H,
such that all minimal hierarchical k-anonymizers M enable
(negl(N),Ω(N))-compound-PSO attacks.

Theorem 5.2. For all constants k ≥ 2, α > 0, D = ω(logN),
and T = dN2/αe, there exists a distribution U over UD =
[0,T ]D, a generalization hierarchy H, such that all minimal
hierarchical k-anonymizers M enable (α,N)-compound-PSO
attacks. The attack also works for k = N and D = ω(N logN).

These theorems mirror Theorems 4.2 and 4.3, inheriting
their advantages and disadvantages. Proofs for both attacks
follow the same general structure, using the corresponding
downcoding attacks in non-black-box ways (Appendix B).
The key observation is that some of the downcoded records
in the downcoding attacks immediately give the predicates
needed to predicate single-out.

Algorithm 2 illustrates the compound-PSO adversary for
the example of clustered Gaussians described in Section 4.4.
Compare to the downcoding adversary in Algorithm 1. In-
stead of outputting a complete dataset Z (as in the downcod-
ing attack), we simply output descriptions of certain records
within Z. Namely, matches(z) : x 7→ {0,1} is the predicate
that outputs 1 if and only if x is consistent with z (i.e., x⊆ z).

6 Reidentifying EdX students using LinkedIn

597,692 individuals registered for 17 online courses offered
by Harvard and MIT through the EdX platform [15]. We
show that thousands of these students are potentially vul-
nerable to reidentification. The EdX dataset represents an
egregious failure of k-anonymity in practice and in a case
where the dataset was “properly deidentified” by “statistical
experts” in accordance with regulations, undermining one
of the main arguments used to justify the continued use of
QI-deidentification [12].

EdX collected data about students’ demographics, engage-
ment with course content, and final course grade. EdX sought



Algorithm 2: Compound-PSO adversary for the ex-
ample in Section 4.4 (compare with Alg. 1).
Data: Y, k
Result: Ψ

for cluster t = 1, . . . ,T do
Let Ŷt be the records with an entry in [At ,At+1);
if |Ŷt | 6= k then

continue;

bigt ←{d : yt
d = [At ,At+1]};

bt ← |bigt |;
if |bt −D/2|> D/8 then

continue;
else

Ψ←Ψ∪{matches(zt)}, where

zt
d =

{
[Bt ,Dt) d 6∈ bigt

[At ,Bt)∪ [Di,Ai+1) d ∈ bigt

to make the data public to enable outside research but con-
sidered it protected by the Family Educational Rights and
Privacy Act (FERPA), a data privacy law restricting the dis-
closure of certain educational records [19]. “To meet these
privacy specifications, the HarvardX and MITx research team
(guided by the general counsel, for the two institutions) opted
for a k-anonymization framework” [3]. A value of k = 5 “was
chosen to allow legal sharing of the data” in accordance with
FERPA. Ultimately, EdX published the 5-anonymized dataset
with 476,532 students’ records.

We show that thousands of these students are potentially
vulnerable to reidentification. As a proof of concept, we rei-
dentified 3 students out of 135 students for whom we searched
for matching users on LinkedIn. Each of the reidentified users
failed to complete at least one course in which they were
enrolled, a private fact disclosed by the reidentification attack.

The limiting factor of this attack was not the privacy pro-
tection offered by k-anonymity itself, but the fact that many
records in the raw dataset were missing demographic vari-
ables altogether. In order to boost the confidence of our attack,
we restricted our attention to unambiguously unique records.
To demonstrate the possibility of attribute disclosure, we fur-
ther restricted our attention to students that had enrolled in,
but failed to complete, a course on EdX.

6.1 The Harvard-MIT EdX Dataset

Xed has 476,532 rows, one per student.7 Each row contains
the student’s basic demographic information, and information

7The dataset as published was such that each row represented a student-
course pair, with a separate row for each course in which a student enrolled.
Records corresponding to the same student shared a common UID. Xed as
described above is the result of aggregating the information by UID. See the
appendix for additional background on the EdX dataset.

about the student’s activities and outcomes in each of 16 of
the 17 EdX courses.

The demographics included self-reported level of educa-
tion, gender, and year of birth, along with a country inferred
from the student’s IP address. Many students chose not to
report level of education, gender, and year of birth at all, so
these columns are missing many entries. For each course, Xed

indicates whether the student enrolled in the course, their final
grade, and whether they earned a certificate of completion.
Xed also includes information about students’ activities in
courses including how many forum posts they made.

Xed was 5-anonymized with respect to 17 overlapping
quasi-identifiers separately: Q1, . . . ,Q16, and Q∗ defined next.
Recall that each quasi-identifier is a subset of attributes, not a
single attribute (Def. 3.1).

• Qi = {gender, year of birth, country, enrolled in course i,
number of forum posts in course i}

• Q∗ = {enrolled in course 1, . . . , enrolled in course 16}.

Anonymization was done hierarchically. First, locations were
globally coarsened to countries or continents. Then other
attributes or whole records were suppressed as needed.

6.2 Uniques in the EdX dataset
Table 1 summarizes the results of all analyses described in
this section. Let Qall = Q∗ ∪Q1 ∪ ·· · ∪Q16. Xed is very far
from 5-anonymous with respect to Qall. We find that 7.1% of
students (33,925 students) in Xed are unique with respect to
Qall and 15.3% have effective anonymity less than 5.

Despite EdX’s goals, Xed was not even 5-anonymous with
respect to Q∗: 245 students were unique and 753 had effective
anonymity less than 5! We suspect this blunder is due to k-
anonymity’s fragility with respect to post-processing. The raw
data was first 5-anonymized with respect to Q∗ and afterwards
with respect to Q1, . . . ,Q16. Some rows in the dataset were
deleted in the latter stage, ruining 5-anonymity for Q∗.

We emphasize that the creators of the EdX dataset never in-
tended or claimed to provide 5-anonymity with respect to Qall.
But they admit that each of the attributes in Qall is potentially
public. In our view, the union of quasi-identifiers should also
be considered a quasi-identifier and any exception should be
justified. No justification is given.

6.2.1 Unambiguous uniques in the EdX dataset

A naive interpretation of the 7.1% unique students is that an
attacker who knows Qall would be able to definitively learn
the grades of 7.1% of the students. But there is a major source
of ambiguity: missing information. Gender, year of birth, and
level of education were voluntarily self-reported by students.
Many students chose not to provide this information: 14.9%
of students records are missing at least one of these attributes.
It is missing in the raw data, not just the published data. Thus,



EA EAamb

Aux info = 1 < 5 = 1 < 5

Q∗ 245 753 245 753
Qall 33,925 73,136 9,125 22,491
Qposts 120 216 120 216

(1.7%) (3.0%) (1.7%) (3.0%)

Qacq 31,797 69,543 7,108 19,203
Qacq+ 41,666 98,201 7,512 20,402
Qresume 5,542 10,939 732 2,310

(34.2%) (67.4%) (4.5%) (14.2%)

Table 1: Number of students by effective anonymity (EA)
or ambiguous effective anonymity (EAamb) with respect to
various choices of attacker auxiliary information (Q∗, Qall,
etc.), as described in this section. Numbers in parentheses
are the value as a percentage of the relevant subset of the
full dataset: for Qposts, the 7,251 students with at least one
forum post; for Qresume, the 16,224 students with at least one
certificate. EA= EAamb for Q∗, Qposts.

a female Italian born in 1986 might appear in the dataset with
any or all three attributes missing.

This makes the 7.1% result difficult to interpret. From an
inferential standpoint, the relevant question is not how many
students have unique quasi-identifiers, but how many are un-
ambiguously unique. We compute the ambiguous effective
anonymity EAamb (defined in App. A.1) of each record by
treating any missing attribute values as the set of all possible
values for that attribute. This number may be much lower than
7.1%. We stress that this ambiguity comes from missing data,
not from k-anonymity.

We find that 1.9% of students (9,125 students) are unam-
biguously unique with respect to Qall and 4.7% have ambigu-
ous effective anonymity less than 5. Over 9,000 students are
unambiguously identifiable in the dataset to anybody who
knows all the quasi-identifiers, without knowing whether the
students chose to self-report their gender, year of birth, or
level of education. This allows an attacker to draw meaning-
ful inferences about them.

6.2.2 Limiting the attacker’s knowledge

Students in the EdX dataset are vulnerable to reidentification
by adversaries who have much less auxiliary information than
Qall. We consider the (ambiguous) effective anonymity for
three attackers who could plausibly reidentify students in the
EdX dataset: a prospective employer, a casual acquaintance,
and an EdX classmate. The results are summarized in Table 1.

In Section 6.3, we carry out the prospective employer attack
using LinkedIn. This demonstrates that some students in the
EdX dataset can be reidentified by anybody.

Prospective employer Consider a prospective employer
who is interested in discovering whether a job applicant failed
an EdX course. An applicant is likely to list EdX certificates
on their resume. The employer very likely knows Qresume =
{gender, year of birth, location, level of education, certificates
earned in courses 1–16}. Qresume only includes those certifi-
cates actually earned, but omits courses in which a student
enrolled but did not earn a certificate.

5,546 students in Xed have effective anonymity 1 with
respect to Qresume, and 10,942 have effective anonymity less
than 5. These numbers may seem small, but they constitute
34.2% and 67.4% of the 16,224 students in the dataset that
earned any certificates whatsoever. Moreover, 732 students
are unambiguously unique—333 of whom failed at least one
course, and 38 of whom failed three or more courses. Thus,
2.1% of students (333 students) who earned certificates of
completion failed at least one course and have unambiguous
effective anonymity 1 with respect to Qresume.

Casual acquaintance Casual acquaintances might, in the
course of normal conversation, discuss their experiences on
EdX. They would likely discuss which courses they took,
and would naturally know each other’s ages, genders, and
locations. So acquaintances know Qacq ={gender, year of
birth, location, enrollment in courses 1–16} ⊆ Qall. 6.7% of
students in Xed have effective anonymity 1 with respect to
Qacq, and 14.6% have effective anonymity less than 5.

Moreover, acquaintances typically know each other’s level
of education too, even though this is not included in Qall.
If we augment the acquaintance’s knowledge with level of
education Qacq+ = Qacq∪{education}, then things become
even worse. 8.7% students in Xed have effective anonymity 1
with respect to Qacq+, and 20.6% have effective anonymity
less than 5.

EdX classmate Each EdX course had an online forum for
student discussions. Because these posts were public to all
students enrolled in a given course, the number of forum posts
made by any user was deemed publicly available information.
But ignoring composition, EdX did not consider the combina-
tion of forum post counts made by a user across courses.

Consider an attacker who knows Qposts ={number of fo-
rum posts in courses 1–16} ⊆ Qall. 120 students in Xed are
unambiguously unique with respect to Qposts, and 216 have
ambiguous effective anonymity less than 5. These numbers
may seem minute, but they constitute 1.7% and 3.0% of the
7251 students in the dataset that made any forum posts whatso-
ever. Effective anonymity and ambiguous effective anonymity
are always the same for this attacker because Qposts excludes
the demographic columns that are missing many entries.

Who knows Qposts? 20 students in the dataset itself en-
rolled in all 16 courses and could have compiled forum post
counts across all courses for all other EdX students. To any
one of these 20 students the 120 students with distinguishing



forum posts are uniquely identifiable. Such an attacker can
then learn these 120 students ages, genders, level of educa-
tions, locations, and their grades in the class.

In fact, each of the 120 vulnerable students can be unam-
biguously uniquely distinguished by 23–70 classmates; 60
students by 40–49 classmates each. This enables more class-
mates to act as attackers than just the 20 who took all courses.
This is because distinguishing a student using forum posts
doesn’t require being enrolled in all 16 courses. For each of
the 120 vulnerable students, we find which subsets of their fo-
rum posts suffices to distinguish them. This analysis amounts
to checking whether these students remain unambiguously
unique if some subset of their forum post counts are redacted.

6.3 Reidentifying EdX students on LinkedIn
On LinkedIn.com, people show off the courses they com-
pleted. They may be unwittingly revealing which courses
they gave up on. 2.1% of students who earned certificates of
completion (333 students) failed at least one course and have
unambiguous effective anonymity 1 with respect to Qresume.

We reidentified three of these 333 students, with a rough
confidence estimate of 90–95%.

6.3.1 Method

People routinely post Qresume on LinkedIn where it is easily
searchable and accessible for a small fee. We paid $119.95 for
a 1 month Recruiter Lite subscription to LinkedIn. Recruiter
Lite provides access to limited search tools along with the
ability to view profiles in one’s “extended network”: 3rd de-
gree connections to the account holder on the LinkedIn social
network. It is also possible to view public profiles outside
one’s extended network with a direct link, for example from a
Google search. A real attacker could build a larger extended
network or pay for a more powerful Recruiter account.

We performed the attack as follows. We restricted our atten-
tion to 135 students in Xed who were unambiguously unique
using only certificates earned plus at most one of gender, year
of birth, and location, and who also had no missing demo-
graphic attributes. We manually searched for LinkedIn users
that listed matching course certificates on their profile by
searching for course numbers (e.g., "HarvardX/CS50x/2012").
We attempted to access the profiles for the resulting users,
whether they were in our extended network or by searching
on Google. If successful, we checked whether the LinkedIn
user lists exactly the same certificates as the EdX student,
and whether the demographic information on LinkedIn was
consistent with the EdX student. If everything matched, we
consider this a reidentification.

6.3.2 Results

We reidentified 3 of the attempted 135 EdX students, each of
whom registered for but failed to complete an EdX course.

Two were unambiguously unique using only certificates of
completion. In each case, the EdX student’s gender matched
the LinkedIn user’s presenting gender based on profile picture
and name. In each case, the LinkedIn user’s highest completed
degree in 2013 matched the EdX student’s listed level of
education.

1. Student 1’s EdX record lists location `1 and year of birth as
y1. The matching LinkedIn user began a bachelors degree
in year y1 +20 and was employed in country `1 in 2013.

2. Student 2’s EdX record lists location `2 and year of birth as
y2. The matching LinkedIn user began a bachelors degree
in year y1 +18 and was in country `2 for at part of 2013.

3. Student 3’s EdX record lists location `3 and year of birth
as y3. The matching LinkedIn user graduated high school
in year y3 +19, attended high school and currently works
in country `3. In 2013 the LinkedIn user was employed by
an international firm with offices in `3 and other countries.

6.3.3 Confidence

We cannot know for sure whether our purported reidentifica-
tions on LinkedIn are correct because were instructed by our
IRB not to contact the reidentified EdX students.

In this section, we estimate that our reidentifications are
correct with 90–95% confidence. Moreover, an error is most
likely a result of our imperfect ability to corroborate location
and year of birth on LinkedIn, not a result of the protection
afforded by k-anonymity. Our analysis is necessarily very
rough. A precise error analysis is impossible. We omit details
to avoid imparting any other impression.

We consider two main sources of uncertainty. First is the
limited information available on LinkedIn profiles, especially
age and location. We inferred a range of possible ages by ex-
trapolating from educational milestones. We inferred a set of
possible locations based on listed activities around 2013. Both
methods are imperfect. The locations in EdX were inferred
from IP address and are likely imperfect. LinkedIn users or
EdX students can report their attributes inconsistently. Note
that they cannot lie about earning EdX certificates: this data
comes from EdX itself and the LinkedIn certificates are dig-
itally signed and cryptographically verifiable.8 We estimate
the probability of error on at least one attribute inferred from
LinkedIn is on the order of 5–10%.

The second source of error is suppressed student records.
Of the 597,692 students enrolled in EdX courses over the
relevant period, only 476,532 appear in the published dataset.
121,160 students (20.3%) are completely suppressed. We
matched students xedx in EdX with users on LinkedIn xli using
Qresume = {gender, year of birth, location, level of education,
certificates earned in courses 1–16} as well as we could. An

8An example certificate is available here: https://verify.edx.
org/cert/26121b8dec124bc094d324f51b70e506. Instructions for
verifying the signature are here: https://verify.edx.org/cert/
26121b8dec124bc094d324f51b70e506/verify.html

https://verify.edx.org/cert/26121b8dec124bc094d324f51b70e506
https://verify.edx.org/cert/26121b8dec124bc094d324f51b70e506
https://verify.edx.org/cert/26121b8dec124bc094d324f51b70e506/verify.html
https://verify.edx.org/cert/26121b8dec124bc094d324f51b70e506/verify.html


error will occur if a suppressed student x′edx is the true match
for the LinkedIn user. For this to happen, x′edx and xedx must
agree on Qall. If xedx is unique in the complete dataset, no
error occurs.

We do a back of the envelope calculation of the chance
of error from record suppression under two simplifying as-
sumptions. First, that random student records are suppressed.9

Second, that the number of certificates of completion that a
user earns is statistically independent of their other attributes
(assuming they registered for enough courses). We compute
99.5%-confidence upper bounds for two parameters: the prob-
ability p that a random EdX student matches our reidentified
EdX student; the probability q that a random EdX student
earns the same number of certificates as our reidentified EdX
student. 121,160·pq is a very coarse estimate of the proba-
bility that a supressed student record causes an error. For the
three students we reidentified, this comes out to 0.1–1%.

A much less likely source of error is suppression of individ-
ual courses from a student’s record. Such an error will occur
if some courses for the purported match xedx were suppressed,
and there is some other EdX student x′edx that is the true match
for the LinkedIn user xli. This requires course suppression in
xedx and also x′edx (because xedx was unambiguously unique
on Qresume in the published EdX data). All in all, we consider
course suppression to be a much less likely source of error
than student suppression or imperfect attribute inference on
LinkedIn.

6.4 EdX was “properly” deidentified
El Emam, et al., criticize prior reidentification studies as using
data that were “improperly deidentified” because they did not
“follow[] existing standards” [12]. They thus conclude that
there is no convincing evidence of real-world failure of QI-
deidentification techniques in a regulated context.

In contrast, the EdX dataset incontrovertibly followed ex-
isting standards. FERPA is the relevant regulation. It requires
the published information to not enable identification of any
student with reasonable certainty. The EdX dataset was specif-
ically created to comply with FERPA, following Department
of Education guidance and overseen by general council for
Harvard and MIT [3].

Moreover, the EdX dataset arguably followed the HIPAA
Expert Determination–the standard used by El Emam, et al.
The Expert Determination standard requires three things:10

(1) Deidentification be performed by “a person with appropri-
ate knowledge . . . and experience”. (2) The person determines

9There are more sophisticated techniques for estimating the probability
of error under this assumption [24]. But in EdX omitted records are “outliers
and highly active users because these users are more likely to be
unique and therefore easy to re-identify” [19]. As such, using the more
sophisticated techniques would not give more meaning to our very coarse
estimates.

10https://www.hhs.gov/hipaa/for-professionals/privacy/
special-topics/de-identification/index.html

that the risk of reidentification is “very small”. (3) The person
“documents the methods and results of the analysis that justify
such determination.” The creation of the EdX data was over-
seen by Harvard professors in computer science and statistics
with specific expertise in privacy and inference. They find
a “low probability that the dataset will be re-identified” and
their methods and analysis are well-documented [19]. The
main deviation from the Expert Determination standard is the
difference between “very small” and “low” reidentification
risk.

7 Conclusions

In short, we show that k-anonymity – and QI-deidentification
generally – fails on its own terms. Our attacks rebut three pri-
mary arguments that QI-deidentification’s practioners make
to justify its continued use. First, we reidentify individuals
in EdX dataset; it was “properly de-identified” by a “statis-
tical experts” and in accordance with procedures outlined in
regulation, meeting the high bar set by El Emam, et al. [12].
Second, our downcoding attacks demonstrate that even if ev-
ery attribute is treated as quasi-identifying, k-anonymity and
its refinements may provide no protection. Ours are the first
attacks in either of these two settings. Third, our attacks also
undermine the claim that QI-deidentification meets regula-
tory standards for deidentification. The compound PSO and
reidentification attacks challenge k-anonymity’s status under
GDPR and FERPA respectively.

Moreover, our attacks show that QI-deidentification vio-
lates three properties of a worthwhile privacy notion, even in
practice. Namely, avoiding distributional assumptions, robust-
ness against post-processing, and smooth degradation under
composition. We expand on these next.

Downcoding attacks prove that whatever privacy is pro-
vided by QI-deidentification crucially depends on unstated
assumptions on the data distribution. One possible pushback
is that our downcoding attacks use specially constructed dis-
tributions and hierarchies, not naturally occurring ones. But
even a contrived counterexample proves that there is some
unnoticed distributional assumption that is critical for security.
Moreover, the distributions and hierarchies in Theorem 4.2
are not so unnatural when considering that data are made,
not found (to quote danah boyd). Say an analyst wants to k-
anonymize a high dimensional dataset. One natural approach
is to find a low-dimensional projection with clusters of about
k rows each, and then construct the generalization hierarchy
over this representation. The result could easily satisfy condi-
tions that enable our downcoding attack or a direct extension.

Robustness against post-processing requires that further
processing of the output, without access to the data, should not
diminish privacy. Downcoding proves that QI-deidentification
is not robust to post-processing. Our attacks recover specific
secret information about a large fraction of a dataset’s entries
with probability close to 1. Also, the EdX dataset also proves

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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that k-anonymity is not robust to post-processing for purely
syntactic reasons. The result of removing rows from a k-
anonymous dataset may not satisfy k-anonymity as defined.
We see this in the EdX data: it is not in fact 5-anonymous
with respect to quasi-identifier Q∗ (courses), despite claims
otherwise. This fragility to post-processing is not so much a
privacy failure as a syntactic weakness of the definition itself.

Smooth degradation under composition requires that a com-
bination of two or more private applications mechanisms
should also be private, albeit with worse parameters. The EdX
dataset proves that QI-deidentification is not robust to compo-
sition, even when done by experts in accordance with strict
privacy regulations. Ganta et al. present theoretical composi-
tion attacks, showing that if the same dataset is k-anonymized
with different quasi-identifiers the original data can be recov-
ered [13]. With the EdX dataset the possibility became reality.
To the best of our knowledge, this is the first example of such
a failure in practice.

The most important open question raised by this work is to
characterize the power of downcoding attacks. What proper-
ties of a data distribution and generalization hierarchy enable
downcoding? Is vulnerability to downcoding testable? In what
settings is downcoding provably impossible? Can one demon-
strated downcoding in the wild? We leave these questions for
future work.

Responsible disclosure and data availability After rei-
dentifying one EdX student, we reported the vulnerability to
Harvard and MIT who promptly replaced the dataset with
a heavily redacted one. Our IRB determined that this re-
search was not human subjects research and did not need
IRB approval. However, we were instructed by the IRB not
to contact the reidentified LinkedIn users. The code used
in our analysis of the EdX dataset is at https://github.
com/a785236/EdX-LinkedIn-Reidentification, but we
do not distribute the dataset itself to protect the students’ pri-
vacy.
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A Additional background on the EdX dataset

We summarize the EdX dataset—the chosen quasi-identifiers,
the implementation of k-anonymization, and the resulting
published dataset Xed,raw based on documentation included
with the dataset [19] and in two articles describing the creation
of the dataset itself [3, 9].

The raw dataset consisted of 841,687 rows for 597,692
students. Each row corresponded to the registration of a sin-
gle student in a single course and included the information
described above. IP addresses were used to infer a student’s
location even when a student chose not to self-report their
location. EdX considered username and IP address to be
identifying. Each username was replaced by a unique 7-digit
identification number (UID). A username appearing in multi-
ple rows was replaced by the same UID in each. IP addresses
were redacted.

The dataset, with a row corresponding to a student-course
pair, was k-anonymized according to two different quasi-
identifiers Q and Q∗ (each a subset of the attributes). Q =
{gender, year of birth, country, course, number of forum posts}.
“The last one was chosen as a quasi-identifier because
the EdX forums are somewhat publicly accessible and
someone wishing to re-identify the dataset could, with
some effort, compile the count of posts to the forum
by username” [19]. Separately, the set of courses that each
student enrolled in were considered to form a quasi-identifier:
Q′ = {enrolled in course 1, . . . , enrolled in course 16}. The
data was k-anonymized first according to Q∗ and then accord-
ing to Q. Additionally, `-diversity was enforced for the final
course grade, with `= 2.

After aggregating the rows by UID, Xed can be seen as k-
anonymized with respect to 17 overlapping quasi-identifiers:
Q∗ as before and Q1, . . . ,Q16, where Qi = {gender, year of
birth, country, enrolled in course i, number of forum posts in
course i}.

The final published result Xed,raw includes 641,138 course
registrations by 476,532 students across 16 courses.

As published, the EdX dataset had 641,138 rows, each
representing to a single course registration for one of 476,532
distinct students. But the object of our privacy concerns is a
student, not a student-course pair. We aggregated the rows
corresponding to the same UID. We call the result Xed.

The creators of the EdX dataset failed to identify which
attributes are publicly available—the very thing that experts
are supposed to be good at. Specifically, level of education
and certificates of course completion are not included in any
of the quasi-identifiers despite both being readily available
on LinkedIn. The exclusion of certificates is particularly in-
defensible: at the same time as the EdX dataset was being
created, EdX and LinkedIn collaborated to allows LinkedIn
users to include cryptographically unforgeable certificates of
completion on their profiles.

10Different rows of the same student often listed different countries. Al-



A.1 Ambiguous effective anonymity

We consider a relaxation of the notion of effective
anonymity which we call ambiguous effective anonymity.
Let Iamb(Y,y,Q) , {n : yn(Q) ∩ y(Q) 6= /0}. The ambigu-
ous effective anonymity of y in Y with respect to Q
is EAamb(Y,y,Q) = |Iamb(Y,y,Q)|. Ambiguous effective
anonymity helps us reason about what an attacker can infer
from the dataset.

Definition A.1 (Unambiguous uniqueness). We say y ∈ Y is
unique with respect to Q if EA(Y,y,Q) = 1, and unambigu-
ously unique if EAamb(Y,y,Q) = 1.

EAamb is never less than EA, and is very often greater
in EdX. The presence of unambiguously unique records in
a supposedly-anonymized dataset indicates a clear failure
of syntactic anonymity. Considering ambiguous effective
anonymity makes critiquing k-anonymity much harder. We
are giving k-anonymity the benefit of all the additional am-
biguity that comes from missing data rather than from the
anonymizer itself.

B Deferred Proofs

B.1 Proof of Theorem 4.2

H = U

H1

H1,sml H1,big

. . . Ht

Ht,sml Ht,big

. . . HT

HT,sml HT,big

Figure 4: The generalization hierarchy used in the proof of
Theorem 4.2. The attribute domain is an interval in R, as are
each Ht and Ht,sml. Each set Ht,big = Ht \Ht,sml is the union
of two intervals

Claim B.1. Let H be a hierarchy with T nodes at the second
level: H1, . . . ,Ht (as in Figure 4). Let X∈UD be a dataset, M
be a minimal hierarchical k-anonymizer, and Y←M(X,H).
For t ∈ [1,T ], let Xt = X∩HD

t and let Yt be the records in Y
corresponding to the records in Xt . If X = ∪tXt , then for all
but at most one t ∈ {t : |Xt |= k}, y⊆ HD

t for all y ∈ Yt .

Note that as defined, the generalized records in Yt are not
necessarily contained in HD

t . The claim says that if X consists
of data in the T clusters X1, . . . ,XT , then the records in Yt
will be contained in HD

t for almost all clusters of size exactly
k.

most always there were only two different values, one of which was “Un-
known/Other.” In this case, we used the other value for the student’s unified
record. In all other cases, we used “Unknown/Other.”

Proof of Claim B.1. First, we show that for any y = (y1, . . . ,
yD), a single coordinate of y is generalized to H = U if and
only if every coordinate in y is generalized to H. Namely, if
yd = H for some d, then y = HD.

Suppose for contradiction that there exists y = (y1, . . . ,yD)
corresponding to x∈X such that y1 = H but y2 ⊆Ht for some
t. By the assumption on X, there exists t ′ such that y ∈ Yt ′ .
Because y2 ⊆ Ht , t ′ = t and hence y ∈ Yt . By k-anonymity,
there are at least k− 1 additional records y′ ∈ Y such that
y′ = y. Repeating the previous argument, y′ ∈ Yt .

Let y∗ = (Ht ,y2, . . . ,yD) ( y. Construct Y∗ by replacing
all copies of y in Y with y∗. It is immediate that Y∗ is k-
anonymous and respects the hierarchy. By the assumption that
y1 = H, Y∗ strictly refines Y. Additionally, Y∗ generalizes
X, because all altered rows were in Yt . This contradicts the
minimality of the k-anonymizer M. Therefore we have proved
that if yd = H for some d, then yd = H for all d.

Next, we show that for all but at most one t ∈ {t : |Xt |= k},
there exists y ∈ Yt such that y⊆ HD

t . By the preceding argu-
ment, it suffices to show that y 6= HD. Suppose for contradic-
tion there exists t 6= t ′ such that for all y ∈ Yt ∪Yt ′ , y = HD.
Construct Y′ by replacing each y∈Yt ′ with HD

t ′ ( y. It is easy
to see that Y′ respects the hierarchy, satisfies k-anonymity,
generalizes X, and strictly refines Y. This contradicts the
minimality of the k-anonymizer M.

To complete the proof, let t ∈ {t : |Xt | = k} and suppose
there exists y ∈ Yt such that y⊆ HD

t . By k-anonymity, there
must be at least k− 1 distinct y′ = y ⊆ HD

t . By assumption
on X, each such y′ must be an element of Yt . Because |Yt |=
|Xt |= k, every element of Yt is equal to y⊆ HD

t .

Proof of Theorem 4.2. Data distribution Records x ∼ U
are noisy versions of one of T = N/k cluster centers ct ∈ RD.
Each coordinate xd of x is ct,d masked with i.i.d. noise with
variance σ2. The variance is usually small, but is large with
probability 1/k (variances σ2

sml� σ2
big). The generalization

hierarchy H is shown in Figure 4. H divides the attribute
domain U into T components Ht , each of which is further
divided into small values Ht,sml and large values Ht,big.

We set the parameters so that w.h.p. all of the follow-
ing hold. First, the data is clustered: Prx[∃t, x ∈ HD

t ] >
1− negl(N). Second, every coordinate xd of a small-noise
(variance σ2

sml) record is small: xd ∈ Ht,sml. Third, the coordi-
nates of large-noise (variance σ2

big) records are large or small
(xd ∈ Ht,big or xd ∈ Ht,sml, respectively) with probability 1/2
independent of all other coordinates . In particular, if x is gen-
erated using large noise then x 6∈ HD

t,sml with high probability.
An example of a distribution U and hierarchy H satisfying the
above is given in Example B.2. In that example, the cluster
centers ct are masked with i.i.d. Gaussian noise.

The adversary The adversary A takes as input Y and pro-
duces the output Z as follows. For t ∈ [T ], let Ŷt = Y∩HD

t .
If |Ŷt | 6= k, copy every y ∈ Ŷt into the output Z. Otherwise



|Ŷt |= k. By k-anonymity Ŷt consists of k copies of a single
generalized record yt . Let bigt = {d : yt

d = Ht} be the large
coordinates of yt , and let Bt = |bigt | be the number of large
coordinates. If |Bt −D/2| > D/8, then A writes k copies of
yt to the output Z. Otherwise A writes k−1 copies of HD

t,sml

and one copy of zt = (zt
1, . . . ,z

t
D) to the output, where

zt
d =

{
Ht,big d ∈ bigt

Ht,sml d 6∈ bigt
(1)

Analysis It is immediate from the construction that Z� Y.
Moreover, it is easy to arrange the records in Z so that zn ⊆ yn
for all n∈ [N]. By construction, zn ( yn implies that zn differs
from zn differs from yn on at at least Bt ≥ 3D/8 coordinates.

To prove the theorem, it remains to show that w.h.p. X� Z
and Z ≺Ω(N) Y. Let Xbig = X \

(⋃
t HD

t,sml

)
consist of all

the records x that have at least one large coordinate (i.e.,
xd ∈ Ht,big for some t,d).

For all t ∈ [T ], let Xt = X∩HD
t and let X̂t ⊆ Xt be the

records x ∈ X that correspond to the records in Ŷt . (Whereas
Xt consists of all records that are in cluster t, X̂t consists
of only those records that correspond to generalized records
y ∈ Ŷt that can be easily inferred to be in cluster t based on
Y.) A cluster t is X-good if |Xt | = k and |Xt ∩Xbig| = 1. A
cluster t is Ŷ-good if Ŷt = k and |Bt −D/2| ≤ D/8.

It suffices to show that:

• Ω(N) clusters t are X-good.
• All but at most one X-good clusters are Ŷ-good.
• For all Ŷ-good clusters t, X̂t ∩Xbig = {xt} and xt ⊆ zt .

Note that if t is both X-good and Ŷ-good, then X̂t = Xt . But
there may be t that are Ŷ-good but not X-good.

Many clusters are X-good We lower bound Pr[t X-good]
by a constant and then apply McDiarmid’s Inequality.

Pr[t X-good] = Pr[|Xt |= k] ·Pr
[
|Xt ∩Xbig|= 1

∣∣ |Xt |= k
]
.

|Xt | is distributed according to Bin(N,k/N), which ap-
proaches Pois(k) as N grows. Using the fact that k! ≤
(k/e)ke

√
k we get: Pr[|Xt | = k] ≈ (kke−k)/k! ≥ 1/(e

√
k) =

Ω(1). Pr[x ∈ Xbig] =
1
k ± negl(N). The events x ∈ Xt and

x ∈ Xbig are independent. Therefore

Pr
[
|Xt∩Xbig|= 1

∣∣ |Xt |= k
]
=(1−1/k)k−1±negl(N)> 1/e.

Combining the above, Pr[t X-good] = Ω(1). Quantitatively,
for k ≤ 15, Pr[tX-good]& 1/(e2

√
k)> 1/30.

Let g(X) be the number of X-good values of t. By the
above, E[g(X)] = Ω(N). Changing a single record x can
change the value of g by at most 2. Applying McDiarmid’s

Inequality,

Pr
[

g(X)<
E(g(X))

2

]
≤ exp

−2
(
E(g(X))

2

)2

4N

< negl(N).

Thus there are Ω(N) X-good values of t with high probability.

Most X-good clusters are Ŷ-good Cluster t is Ŷ-good if
Ŷt = k and |Bt −D/2| ≤ D/8. First we show that for all but
one X-good t, |Ŷt | = k. Let Yt ⊇ Ŷt be the records in Y
corresponding to the records in Xt . (Whereas Yt consists of
all records that correspond to Xt , Ŷt consists of only those
records whose membership in Yt can be easily inferred from
Y.) Observe that |Xt |= |Yt | ≥ |Ŷt |. By construction, for all
x ∈ X there exists t such that x ∈ Xt with high probability
(i.e., X =∪tXt ). By Claim B.1, for all but at most one X-good
t and every y ∈ Yt , y⊆ HD

t . Thus |Ŷt |= Yt = k.
Finally we show that for all X-good t as guaranteed by

Claim B.1, Bt ∈ (3D/8,5D/8) with high probability. Ŷt con-
sists of k copies of the same generalized record (y1, . . . ,yd).
Since M is hierarchical, yd ∈ {Ht ,Ht,sml,Ht,big}. By the X-
goodness of t, Xt contains 1 large-noise record xbig and k−1
small-noise records x′ By correctness of the k-anonymizer M,
xbig,d ∈ Ht,big =⇒ yd ⊇ Ht,big. Minimality implies the con-
verse: yd ⊇ Ht,big =⇒ xbig,d ∈ Ht,big. With high probability,
x′d ∈ Ht,sml =⇒ yd ⊇ Ht,sml. Putting it all together,

xbig,t ∈ Ht,big ⇐⇒ yd = Ht ⇐⇒ d ∈ bigt .

By construction of the data distribution U , Pr[d ∈ bigt ] = 1/2
independently for each d ∈ [D]. Applying Chernoff again,
Pr[|Bt −D/2| ≥ D/8]< 2e−Ω(D) < negl(N).

Analyzing Ŷ-good clusters By construction, bigt = {d :
∃x ∈ X̂t ∩ Xbig st xd ∈ Ht,big}. Because |bigt | > 0, |X̂t ∩
Xbig| > 1. A simple Chernoff-then-union-bound argument
shows that the probability that there exist distinct records
x,x′ ∈Xbig such that |bigt |= |{d : xd ∈Ht,big∨x′d ∈Ht,big}|<
5D/8 is negligible. Hence X̂t ∩Xbig is a singleton {xt} with
high probability. xt ⊆ zt follows immediately from the con-
struction.

Example B.2. The following distribution U and hierarchy
H suffice for the proof of Theorem 4.2. The distribution U is
defined by T = N/k cluster centers c1, . . . ,cT ∈ R and stan-
dard deviations σsml,σbig ∈R. A record x∈RD is sampled as
follows. Sample a cluster center t ← [T ] uniformly at ran-
dom. Sample size ← {sml,big} with Pr[size = big] = 1/k.
Sample noise e ← N(0,σ2

sizeI). Output x = ct + e, where
ct = (ct , . . . ,ct) ∈ RD.

The hierarchy H consists of intervals Ht = [ct −∆,ct +∆]
centered at the cluster centers ct , for some ∆. The hierarchy
further subdivides each Ht into a smaller interval Ht,sml =



[0,3]

[0,2]

[0,1]

{0} {1}

{2}

{2}

{3}

{3}
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] [0,T +1]

HT

{T +1}

...

Figure 5: The generalization hierarchy used in the proof of
Theorem 4.3. On the left is the hierarchy H3 for the domain
U = [03]. On the right is a recursive construction of HT+1 for
domain U = [0,T +1] from the hierarchy HT .

[ct − τ,ct + τ), for some τ < ∆, and the complement Ht,big =
Ht \Ht,sml.

To suffice for our proof, we require that with high proba-
bility over x ∼U there exists t ∈ [T ] such that: (a) x ∈ HD

t ;
(b) if size= sml, then x ∈ HD

t,sml; (c) if size= big, then each
coordinate xd is in Ht,big with probability 1/2 independent of
all other coordinates xd′ . Many instantiations of the parame-
ters would work, such as: σsml = 1, τ = logN, σbig = ζ logN,
∆ = ζ log2 N, and ct = 2t∆, where ζ = 1√

2·erf−1(1/2)
≈ 1.48

and erf is the Gaussian error function.

B.2 Proof of Theorem 4.3
A k-anonymizer M : X 7→ Y groups records x ∈ X into equiv-
alence classes such that if x and x′ are in the same class, then
Y(x) = Y(x′). In general, M may have a lot of freedom to
group the x’s the equivalence classes and also to choose the
y’s that generalize each equivalence class.

Claim B.3 states that if M is minimal and generalizes using
hierarchy like in Figure 5, then it has much less freedom.
Namely, Y is fully determined by the choice of equivalence
classes (with probability at least 1−α over the dataset X). M
can group the x’s together, but then has no control over the
resulting y’s.

Claim B.3 and its proof are meant to be read in the context
of the proof of Theorem 4.3 and freely uses its notation.

Proof of Theorem 4.3. Let T = dN2/αe and U = [0,T ] be
the attribute domain. Records x ∈ UD are sampled accord-
ing to the distribution U as follows. First sample t(x)← [T ]
uniformly at random. Then sample each coordinate xd of x
i.i.d. with Pr[xd = t(x)] = 1/2k and xd = 0 otherwise. In other
words, x∈ {0, t(x)}D consists of D independent samples from
t(x) ·Bern(1/2k).

All the t(x) will be distinct except with probability at most(N
2

) 1
T < α/2. If all t(x) are distinct, we say X is collision-free.

The remainder of the proof shows that the adversary succeeds
with high probability conditioned on X collision-free.

Figure 5 defines the generalization hierarchy. It consists of
intervals [0, t] and singletons {t} for t ∈ [T ].

Claim B.3 states that the output Y←M(X,H) of a minimal
hierarchical k-anonymizer must take a restricted form. For

y ∈ Y, let Xy = {x ∈ X : Y(x) = y} be the records in X that
correspond to a copy of y ∈ Y. The claim states that

Pr
[

max
y
|Xy|< 2k

∣∣∣ X collision-free
]
> 1−negl(N).

Moreover, if X is collision-free then for all y ∈Y and d ∈ [D]:

yd = [0,max
x∈Xy

xd ]. (2)

Let A be deterministic adversary that on input Y does the
following. For t, pick yt = (yt

1, . . . ,y
t
D)∈Y such that ∃d ∈ [D],

yt
d = [0, t]. Let yt = ⊥ if no such d exists. By the (2), all y

satisfying the above are identical. If yt 6= ⊥, we define the
following subsets of [D]:

Dt(Y) = {d : yt
d = [0, t]}

D>t(Y) = {d : yt
d = [0, t ′] for t ′ > t}

D<t(Y) = {d : yt
d = [0, t ′] for t ′ < t}.

If yt 6=⊥, A writes zt = (zt
1, . . . ,z

t
D) to the output Z, where

zt
d =


0 d ∈ D<t(Y)

t d ∈ Dt(Y)

[0, t] d ∈ D>t(Y)

(3)

Let TX = {t : yt 6= ⊥}. |Z| = |TX|, and it is easy to see
that Pr[|TX| = N | X collision-free] > 1− negl(N). Hence if
X is collision-free, then Z≺N Y by construction. In this case,
we assume without loss of generality that the rows in Z are
ordered in a way that zn ⊆ yn. It follows immediately from
the construction that zn (D yn.

If X is collision-free, then for every t ∈ TX there is a unique
xt = (xt

1, . . . ,x
t
D) ∈ X such that t(xt) = t. By (2) and the fact

that xt ∈ {0, t}D, xt ⊆ zt . Hence if X is collision-free, then
X� Z with high probability, proving the first part of the theo-
rem.

The following claims is meant to be read in the context of
the proof of Theorem 5.2 and freely uses notation therefrom.

Claim B.3. For y ∈ Y, let Xy = {x ∈ X : Y(x) = y} be the
records in X that correspond to a copy of y ∈ Y. If X is
collision-free, then for all y ∈ Y and d ∈ [D]:

yd = [0,max
x∈Xy

xd ].

Moreover, Pr[maxy |Xy| < 2k | X collision-free] > 1 −
negl(N).

Proof. Both parts of the claim rely on the minimality of M.
Recall that x ∈ {0, t(x)}D. Let T ∗d (Xy) = {xd : x ∈ Xy} ⊆

∪x∈Xy{0, t(x)} be the set of all values in the dth column
of Xy. X collision-free implies that either 0 ∈ T ∗d (Xy) or
|T ∗d (Xy)| ≥ 2 (probably both). Because M is correct and hi-
erarchical, T ∗d (Xy) ⊆ yd ∈ H. Hence, by construction of H,



yd = [0, td ] for some td ∈ [0,T ]. Let t∗d = maxx∈Xy xd . Correct-
ness requires [0, t∗d ]⊆ [0, td ]. Moreover, replacing y = [0, td ]
with [0, t∗d ] would yield a k-anonymous, hierarchy-respecting
refinement of Y. By minimality of M, [0, td ]⊆ [0, t∗d ]. Hence,
yd = [0, t∗d ].

It remains to prove the bound on maxy |Xy|. Let X0 and X1
be an arbitrary partition of Xy. For b ∈ {0,1}, define y′b ⊆ y
as:

y′b = (y′b,1, . . . ,y
′
b,D) = ([0,max

x∈Xb
x1], . . . , [0,max

x∈Xb
xD])

Pr[∃b, y′b ( y | X collision-free] > 1− negl(N). To see
why, observe that y′0 = y = y′1 implies that for every coor-
dinate d, maxx∈X0(xd) = maxx∈Xy(xd) = maxx∈X1(xd). If X
is collision-free, this implies that for all d, maxx∈Xy(xd) = 0.
This occurs with probability 1− 2−D = 1− negl(N) (even
conditioned on collision-free).

Consider Y′ constructed by replacing every instance of y
in Y with y′0 or y′1, using |X0| and |X1| copies respectively.
By construction, Y′ correctly generalizes X and respects the
hierarchy H. By the preceding argument, Y′ strictly refines Y
with high probability. Thus, by minimality of M, Y′ cannot
be k-anonymous. This means that for every partition X0,X1,
one of |Xb| ≤ k−1. Therefore, |Xy|< 2k.

The following claim is used to prove Theorem 5.2. It is
meant to be read in the context of Theorem 4.3 and freely
uses notation therefrom.

Claim B.4. Let k≥ 2, D = ω(logN), U, X, Y, and Dt(Y) as
defined in the proof of Theorem 4.3. Let T ′ = {t : zt ∈ Z}.

Pr
[
∀t ∈ T ′ : |Dt(Y)| ≥ D

4ke

∣∣∣ X coll-free
]
> 1−negl(N)

(4)

Equation (4) also holds for k = N, D = ω(N logN).

Proof of Claim B.4. The proof is an application of Chernoff
and union bounds. We rewrite Dt(Y) as {d : ∃n, Yn,d = [0, t]}.

For y ∈ Y, let Xy contain the records x that correspond to
a copy of y. Consider x∗ ∈ Xy, and let t∗ = t(x∗). We call
d SUPER if (x∗d 6= 0) and (x′d = 0 for all x′ ∈ Xy \{x∗}). By
Claim B.3, if d is SUPER then d ∈ Dt(Y). We will lower
bound the number of SUPER d.

For an index set I ⊆ [N], let XI = {xn}n∈I . By Claim B.3,

Pr[∃I st (|I|< 2k)∧(Xy = XI) | X coll-free]> 1−negl(N).

Observe that if Xy = XI , then x∗ ∈ XI and |I| ≥ k (by k-
anonymity).

We call d GOOD with respect to XI if there is a unique x ∈
XI such that xd 6= 0. Let DI = {d GOOD wrt XI}. Observe

that if Xy = XI and d is SUPER, then d is GOOD with respect
to XI . Therefore

|Dt | ≥ min
I:k≤|I|<2k,x∗∈I

|DI |

except with at most negligible probability (conditioned on X
collision-free).

For fixed I,E[|DI |] =D(1/2k)(1−1/2k)|I|>D/2ke where
the last inequality follows from |I|< 2k. By a Chernoff bound:
Pr[|DI | ≤ D/4ke]≤ e−D/32ke. By the union bound:

Pr
[

min
I:k≤|I|<2k,x∗∈I

|DI | ≤ D/4ke
]
≤ e−D/32ke

2k−2

∑
|I|=k

(
N
|I|

)
For k = O(1), ∑

2k−2
|I|=k

(N
|I|
)
< N2k−2. Putting it all together with

a final union bound:

Pr
[
∃t, |Dt | ≤ D/4ke

∣∣∣ X collision-free
]
< N2k−1e−D/32ke.

For D = ω(logN), this probability is negligible. For k = N
and D = ω(N logN), the set {I : k ≤ |I|< 2k} is a singleton,
doing away with the need for a union bound. In this case the
upper bound is Ne−D/32Ne < negl(N).

B.3 Theorems 5.1 and 5.2
Proof outline. Proofs for both compound PSO attacks follow
the same general structure, using the corresponding down-
coding attacks in non-black-box ways. The compound PSO
adversary A gets as input Y← MH(X). It emulates the ap-
propriate downcoding adversary, which produces an output Z
such that X� Z≺ Y.

Z contains special generalized records zt indexed by some
t ∈ [T ] (equations (1) and (3)), and may also contain other
records. A outputs Ψ = {ψt} where ψt : x 7→ I(x⊆ zt).

To complete the proof, one must show that the following
hold with probability at least 1−α(N):

• ψ(X) = 1/N
• (ψ∧ψ′)(U) = 0
• ψ(U)< negl(N)
• |Ψ| ≥ L

The first three are implied by the following:

• ∀t, there exists a unique xt ∈ X such that xt ⊆ zt .
• ∀t 6= t ′, zt ∩ zt ′ = /0.
• ∀t, x∼UD, Prx[x⊆ zt ]< negl(N).

For the downcoding attack from Theorem 4.2, these prop-
erties are immediate. For the downcoding attack from The-
orem 4.3, the first two are immediate and the third follows
from Claim B.4.

The requirements on L and α follow from the parameters
of the corresponding downcoding attacks. The downcoding
attack for Theorem 4.2 yields Ω(N) records zt with proba-
bility 1−negl(N). The downcoding attack for Theorem 4.3
yields N records zt with probability 1−α(N).
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