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Abstract. The Census TopDown Algorithm (TDA) is a disclosure avoidance system us-
ing differential privacy for privacy-loss accounting. The algorithm ingests the final, edited
version of the 2020 Census data and the final tabulation geographic definitions. The algo-
rithm then creates noisy versions of key queries on the data, referred to as measurements,
using zero-Concentrated Differential Privacy. Another key aspect of the TDA are invari-
ants, statistics that the Census Bureau has determined, as matter of policy, to exclude
from the privacy-loss accounting. The TDA post-processes the measurements together
with the invariants to produce a Microdata Detail File (MDF) that contains one record
for each person and one record for each housing unit enumerated in the 2020 Census.
The MDF is passed to the 2020 Census tabulation system to produce the 2020 Census
Redistricting Data (P.L. 94-171) Summary File. This paper describes the mathematics
and testing of the TDA for this purpose.
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1. Introduction

Differential privacy (Dwork, McSherry, et al., 2006) (henceforth DP) is considered the gold stan-
dard in privacy-protected data publication—it allows organizations to collect and publish statistics
about groups of people while protecting the confidentiality of their individual responses. Initially
adopted by the U.S. Census Bureau in 2008 for the OnTheMap product (Machanavajjhala et al.,
2008; U.S. Census Bureau, 2008), it has since seen development by Google (Bittau et al., 2017;
Erlingsson et al., 2014), Apple (Apple Differential Privacy Team, 2017), Uber (Johnson et al.,
2018), and Microsoft (Ding et al., 2017). This paper describes the implementation of the TopDown
Algorithm, an algorithm developed within the differential privacy framework for the 2020 Census
of Population and Housing in the United States (Abowd, 2018b).

The 2020 Census implementation will be among the largest deployments of differential privacy
using the trusted-curator (centralized) model and, arguably, will have the highest stakes of any de-
ployed formal privacy system, since decennial census data are used for apportionment, redistricting,
allocation of funds, public policy, and research. The TopDown Algorithm (TDA) is the name given
to the DP mechanisms, optimization algorithms, and associated post-processing that are used for
research and production. TDA generates confidentiality-preserving person- and housing-unit level
data called microdata detail files (MDF) with demographic and housing-unit information from the
resident populations of the United States and Puerto Rico. We refer to the system that carries out
the TDA as the 2020 Census Disclosure Avoidance System (DAS). The DAS is the collection of
computer programs that implements statistical disclosure limitation for the census. It replaces the
record-swapping system used from 1990 to 2010 for decennial censuses.

This paper provides an overview of the DAS and TDA, discusses the motivation for adopting DP
as the privacy-loss accounting framework as compared to other disclosure avoidance frameworks,
and summarizes the critical policy considerations that motivated specific aspects of the design
of TDA. We focus on the implementation of TDA that the Census Bureau used to release the
2020 Census Redistricting Data (P.L. 94-171) Summary File (redistricting data, hereafter) (Federal
Register, 2018). We discuss the utility of the TDA, but leave for future work a discussion of how
users can best analyze the released data and how the privacy semantics—the interpretation of
DP—are modified in the presence of invariants.

The remaining sections of the paper are organized as follows. Section 2 lays out the rationale for
adopting DP as the disclosure avoidance framework for the 2020 Census. Section 3 discusses the
overarching policy and practical constraints that governed the implementation. Section 4 discusses
the many sources of uncertainty that are inherent in producing census population data. Section
5 provides the schema, invariants (tabulations that are not processed by the differentially private
mechanisms) and constraints for the specification of the redistricting data, the first data product
released using the methods described in this paper. Section 6 provides an overview of the DP
mechanism implemented in the TDA as well as the relevant mathematical properties. Section 7
goes into detail about estimation routines and improvements to the algorithm. Section 8 describes
the tuning and testing of the DAS over time. Section 9 describes a set of experiments carried out
to study the effect of certain design choices on the utility of the results using the 2010 redistricting
data. Section 10 concludes.
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2. Differential Privacy: What is it and why use it?

The decennial census data are used to apportion the House of Representatives, to allocate at
least 675 billion dollars of federal funds every year,1 and to redistrict every legislative body in the
nation.2 The accuracy of those data is extremely important. The Census Bureau is also tasked with
protecting the confidentiality of the respondents and the data they provide. This dual mandate
presents a challenging problem because data accuracy and data privacy are competing objectives
(Abowd & Schmutte, 2019). For any given privacy-protection procedure, more accuracy means
less privacy, and the theory underlying differential privacy and related research have helped to
quantify that tradeoff. We use the term formally private to encompass frameworks that include
the many variants of differential privacy. Pure differential privacy, approximate differential privacy,
and concentrated differential privacy are all examples of formally private methodologies. A dis-
closure avoidance framework is formally private if it is constructed from randomized mechanisms
whose properties do not depend on the realized confidential data nor, ideally, on limitations on the
attacker’s information set. A formally private framework must provide an accounting system that
quantifies the privacy loss associated with the ensemble of published query answers. TDA uses the
formal privacy framework defined by zero-Concentrated Differential Privacy which will be defined
below.

There are several reasons why the Census Bureau introduced formally private methodology for
disclosure avoidance. First, the vulnerabilities of traditional disclosure limitation methods are well
known among privacy researchers and legacy systems have been attacked in various ways (Barth-
Jones, 2012; Cohen & Nissim, 2020; Dinur & Nissim, 2003; Dobra & Fienberg, 2000; Dwork et al.,
2017; Fienberg & Slavkovic, 2005; Garfinkel, 2015; Hansell, 2006; Homer et al., 2008; Kifer, 2009;
Narayanan & Shmatikov, 2008; Sweeney, 2002; Wong et al., 2007). Access to petabyte-scale cloud-
based computing resources and software libraries designed to use these resources has increased
enormously. At the same time, the amount of commercially available or independently held data on
individuals that could be used as auxiliary information in order to re-identify individuals in Census
Bureau products has also exploded. Unlike the Census Bureau, which has operated under a strict
data confidentiality statute since 1954 (United States Code, 1954), Internet-based data aggregators
like Apple, Facebook, Google, LinkedIn, Microsoft, Uber, Twitter, and many others only recently
became subject to tight privacy regulation in the form of the California Consumer Privacy Act
(State of California, 2018) and the European Union General Data Protection Regulation (Official
Journal of the European Union, 2016). The presence of vast arrays of personal information held by
private companies and state actors in combination with software like Gurobi, CPLEX and GLPK
designed to solve many NP-hard systems of billions of simultaneous equations finally realized the
scenario that national statistical agencies have known was a vulnerability since Ivan Fellegi’s original
paper on data confidentiality (Fellegi, 1972).

1This is the latest estimate produced by the Census Bureau (Hotchkiss & Phelan, 2017). Independent
researchers place the figure at 1.5 trillion dollars (Reamer, 2020). The effect of the decennial census data
on funding occurs primarily through its effect on the annual Population Estimates Program.

2From the text of Public Law 94-171 “To amend section 141 of title 13, United States Code, to provide
for the transmittal to each of the several States of the tabulation of population of that State obtained in
each decennial census and desired for the apportionment or districting of the legislative body or bodies of
that State.” (94th Congress, 1975)
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Formal methods like differential privacy were developed specifically to avoid the vulnerabilities
of traditional disclosure limitation methods. Furthermore, in contrast to the previous disclosure
avoidance methods used for decennial censuses, the exact methodology and parameters of the ran-
domized mechanisms that implement differential privacy are transparent, meaning an organization
can release the source code and parameters of the mechanisms, but not the actual random numbers
used, without compromising the privacy guarantees (Dwork, McSherry, et al., 2006).

In addition to transparency, two other key properties make DP methods attractive compared
with traditional disclosure avoidance methods. These are the absence of degradation under post-
processing and adaptive composition. First, post-processing (Dwork, McSherry, et al., 2006; Dwork
& Roth, 2014; McSherry, 2009) means that if we run an algorithm A with no direct access to
the confidential data X on the output of the differentially private mechanism M(X), then the
composed algorithm A(M(X)) also satisfies differential privacy with no additional privacy loss.
Second, differential privacy has an adaptive composition property. If we use a DP mechanism
M1(X) to produce an output ω and a second DP mechanism M2(ω,X), then the composed output
is also differentially private and the total privacy-loss of the composed mechanism is a subadditive
and smoothly bounded function of the privacy loss of M1 and M2 (Dwork & Roth, 2014; Murtagh
& Vadhan, 2016).

To the best of our knowledge, no traditional disclosure avoidance method satisfies transparency,
non-degradation under post-processing, and composition (Abowd & Schmutte, 2015). In particular,
the household record-swapping method used in the 1990, 2000 and 2010 Censuses (McKenna, 2018)
is not transparent and degrades poorly under composition. Its parameters and the details of the
swapping algorithm cannot be published without compromising the privacy guarantee. Aggregation,
which was combined with swapping in previous censuses, does not preserve uncertainty about the
underlying data under post-processing because it allows re-identification via reconstruction of the
microdata (Dinur & Nissim, 2003; The JASON Group, 2020). DP mechanisms also degrade under
composition but in a predictable and smoothly bounded manner, thus avoiding highly accurate
database reconstructions if agencies reasonably control their expended privacy-loss budget. DP
mechanisms do not degrade under post-processing. For the traditional disclosure limitation method
of cell suppression (Cox, 1980; Cox et al., 1987), an arbitrarily large part of the suppression pattern
can be unraveled if an attacker knows the value of a single cell that the system assumed was
not known, which can occur either as prior knowledge or because some other group did a cell-
suppressed release of overlapping data but didn’t suppress the same cells. Cell suppression has
formal guarantees, but they only hold against an attacker who knows exactly what was published
and nothing else relevant. Suppression breaks down in a brittle, discontinuous way when the
attacker knows more. Such knowledge may not exist when the data are published, but may enter
the public domain at a later point in time. In contrast, formal privacy provides guarantees against
general rather than specific classes of attackers. While the protection of formally private systems
also degrades with uncoordinated independent data releases, this degradation is smoothly bounded
and fully quantified by the cumulative global privacy-loss budget.

An important aspect of formal privacy is the acknowledgment that the attacker’s knowledge
plays a large role in disclosure avoidance and that assumptions about this knowledge are inherently
imperfect. Thus, the definitions used in formal privacy systems attempt to limit the extent to which
the protections depend upon the specifics of the attacker’s prior information. These limitations
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usually take the form of worst-case analysis and in that sense can be viewed as a minimax approach
to a class of privacy protection problems (Wasserman & Zhou, 2010).

Rather than attempting to make statements about the absolute privacy risk, which requires spec-
ifying the attacker’s information set and strategy, DP shifts the focus to relative privacy guarantees,
which hold for arbitrary attacker prior beliefs and strategies. For example, rather than saying Alice’s
data are not re-identifiable given the output of the DP mechanism, we say that Alice’s incremental
risk of re-identification is measured by the difference between the output of the DP mechanism that
did not include Alice’s data as input versus the same one that did. An attacker or user should
be able to make a statistical inference about Alice—one that depends on aggregate data—but not
an identifying inference—one that is enabled only by the presence of Alice’s information as input
to the DP mechanism. The mathematical analysis that quantifies these limitations on identifying
inferences is called privacy semantics (Balle et al., 2020; Dong et al., 2021; Kairouz et al., 2015;
Kasiviswanathan & Smith, 2014; Wasserman & Zhou, 2010).

2.1. Basic definitions. There are multiple definitions of formal privacy, each having slightly dif-
ferent motivation and mathematical primitives. We use two specific formalizations as part of the
TDA. The primary definition is that of approximate differential privacy or (ϵ, δ)-differential privacy.
The parameter ϵ is commonly referred to as “the privacy-loss parameter” for this definition. The
parameter δ represents the amount of departure from pure differential privacy and is typically set at
values that are smaller than 1/N , where N is the number of records in the dataset, because a mech-
anism that releases a record at random satisfies (0, 1/N) differential privacy. The second definition
is called zero-Concentrated Differential Privacy (zCDP), which implies (ϵ, δ)-differential privacy and
has very robust privacy-loss accounting tools and composition properties. Concentrated differential
privacy was introduced by Dwork and Rothblum (2016) to provide tighter analysis of privacy loss
due to composition. We implement the variant defined by Bun and Steinke (2016a, 2016b), which
can be used to provide a complete privacy-loss accounting framework using the discrete Gaussian
distribution for noise addition (Canonne et al., 2020, 2021).

Definition 1. (Pure/Approximate Differential Privacy) Given ϵ ≥ 0 and δ ∈ [0, 1], a randomized
mechanism M : Xn → Y satisfies (ϵ, δ)–differential privacy if for all x, x′ ∈ Xn differing
on a single entry (denoted x ∼ x′ hereafter),3 and all measurable events E ⊂ Y, we have that
P (M(x) ∈ E) ≤ eϵP (M(x′) ∈ E)) + δ (Dwork, Kenthapadi, et al., 2006). Pure differential
privacy occurs for the case δ = 0 (Dwork, McSherry, et al., 2006).

Definition 2. (zero-Concentrated Differential Privacy (zCDP)) Given ρ ≥ 0, a randomized mech-
anism M : Xn → Y satisfies ρ–zero-concentrated differential privacy (ρ–zCDP) if for all
x ∼ x′ ∈ Xn, and all α ∈ (1,∞):

Dα(M(x)||M(x′)) ≤ ρα,

3In the literature, datasets that differ on a single entry are called neighboring datasets. There are two
different versions of neighboring. (1) unbounded : two datasets are considered neighbors if one can be
obtained from the other by adding or subtracting a single record; (2) bounded : two data sets are considered
neighbors if one can be obtained the from other by modifying a single record. In this paper we use bounded
neighbors because the total population of the U.S. (and of Puerto Rico) is invariant therefore neighboring
datasets must have the same total record count.
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where Dα(P ||Q) = 1
α−1 log

(∑
E∈Y P (E)αQ(E)(1−α)

)
is the Renyi divergence of order α of the

distribution P from the distribution Q (Bun & Steinke, 2016a, 2016b).

The reason for specifying two privacy definitions is that, during the course of implementing the
TDA, we observed substantial accuracy improvements from adopting a discrete Gaussian mechanism
(Canonne et al., 2021) for the generation of noisy measurements versus the geometric mechanism
(Ghosh et al., 2012). While we quantify our privacy semantics using approximate differential pri-
vacy, privacy-loss accounting using the discrete Gaussian mechanism more naturally aligns with
zCDP—allocating ρ rather than ϵ. Therefore, we adopted the zCDP privacy-loss accounting for
TDA. To permit comparison to other DP implementations and because reasoning about the com-
plete distribution of the privacy-loss random variable rather than its tail area is more difficult to
communicate to policymakers, we translate the zCDP privacy parameter ρ into the corresponding
(ϵ, δ) values for approximate differential privacy. When converting ρ to (ϵ, δ), we intentionally did
not use the tightest conversion (Canonne et al., 2020, 2021), but instead chose to use a conver-
sion (Bun & Steinke, 2016a) that overestimates δ and is interpretable as a upper bound on the
probability that a particular level of ϵ does not hold (Asoodeh et al., 2020).

Rather than determining a single (ϵ, δ) pair, zCDP produces a continuum of (ϵ, δ) pairs each
corresponding to a particular value of ρ, and all satisfying Definition 1. The privacy-loss accounting
is done using ρ. See Figure 1 for an examples of the (ϵ, δ) curve based on a zCDP value of ρ = 1 and
ρ = 2.63 (the final production setting of TDA for the redistricting data). When δ = 0, Definition
1 is that of pure differential privacy (Dwork, McSherry, et al., 2006). The curve in Figure 1 is
based on the privacy-loss random variable and indicates that zCDP provides privacy protection
that weakens as δ approaches 0, but never results in catastrophic failure, which some approximate
differential privacy mechanisms do permit.4 No single point on Figure 1 summarizes the value of
rho completely. In public presentations of the work, the Census Bureau has provided the (ϵ, δ)

pairs associated with δ = 10−10 to facilitate the transition from (ϵ, δ) privacy-loss accounting to
rho-based privacy-loss accounting. However, a privacy analysis of only this (ϵ, δ) pair would lead to
a very incomplete analysis of the privacy protections provided by a given setting of ρ. We do not
attempt to further interpret the δ parameter in this work.

Definition 1 describes a property of the output distribution of DP mechanism M . It characterizes
a guarantee that similar input databases will produce approximately the same output distribution.
That is, an adversary cannot learn much more about the specific data of an arbitrary individual
in the database from the mechanism’s output than if the record for that individual had been
removed and replaced with an arbitrary default set of values (Kasiviswanathan & Smith, 2014).
The translation to confidentiality protection comes from the argument that, if a person’s record is
first changed to a default set of values, then their confidentiality is protected because their data were
never used in any published statistic. The degree to which the DP mechanism’s output distribution
is close to this private counterfactual depends on the privacy-loss parameter ρ for zCDP or ϵ for
(ϵ, δ)-DP. The parameter δ is the amount by which the pure DP guarantees are violated. For zCDP,
ρ provides a continuum of (ϵ, δ) pairs with these interpretations. DP mechanisms that implement
zCDP can be tuned to balance the data accuracy and privacy loss of a particular application. In
the case of the 2020 Census and other government statistical applications, setting these values is (or

4Catastrophic failure means one or more records is released with probability min(nδ, 1), where n is the
number of records in the dataset.
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Figure 1. Example of the ϵ-δ curve for ρ = 1 and ρ = 2.63

should be) the job of policymakers. TDA was designed to permit policymakers, in particular the
Census Bureau’s Data Stewardship Executive Policy Committee (DSEP), to set the global privacy-
loss parameter and its allocation to each query. The typical goal is to achieve the maximum
accuracy for a given privacy-loss parameter (ρ or ϵ). However, DSEP’s instructions generally tried
to minimize the privacy-loss parameter given a lower bound on utility (see Section 6).

2.2. Data curator models. The data curator is the organization that collects and retains the data
to be protected, often in a formal database. The 2020 Census application of DP uses the trusted-
curator model, sometimes called the centralized DP model, meaning that a legally authorized
entity (the U.S. Census Bureau) collects and stores the confidential data and is responsible for the
release of tabulations (queries) based on those data applying appropriate confidentiality protection
techniques on the tabulations. This is in comparison with the untrusted curator model, or local
DP model, in which confidentiality protection techniques are applied to individual data records as
they are collected and thus the curator never observes the confidential data directly, only through
the output of the local DP mechanism. We point out the differences between these two models
because the DP methods associated with them are necessarily different. An early example of a
privacy-protection method in the untrusted curator model is randomized response (Warner, 1965)
in which the respondent answers a question truthfully with some predetermined probability, but
otherwise supplies a fixed answer (or answers a different question). The advantage of the trusted
curator model is that it allows for DP methods that are more statistically efficient, meaning that
the results will be more accurate given the same privacy-loss parameter.

3. Policy and Practical Constraints

In designing disclosure avoidance methods for the 2020 Census, several practical and policy
considerations played a large role. Decennial census products are generally tables with counts of
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individuals, households, group quarters residents, or housing units with certain characteristics. The
tabulation systems in place for the 2020 Census assume that the input is an individual or housing-
unit record-level dataset in which each row represents a person or a particular housing unit. This
type of dataset is often called microdata. In order to align with the tabulation system, the design
specifications for TDA mandated the production of microdata—a record-level image for each person
(or housing unit) that, when tabulated, produces the protected query answers (not their confidential
counterparts).

Producing privacy-protected microdata is not a common requirement for disclosure avoidance
systems implemented using the centralized DP model, which are often designed to produce an
unbiased noisy measurement of the answer to the original confidential query according to the use
case for the queries. An important implication of the microdata requirement is that it forces the final
output of TDA to be non-negative and integral because there is no accommodation of a negative
weight or fractional person in the Census Bureau’s microdata tabulation systems.5 From a practical
point of view, this makes complete sense. Some might find it strange if the Census Bureau reported
that there were −1.3 persons with characteristic A in geography B. Any disclosure avoidance
system that allows for changing counts that are zero to non-zero values and enforces non-negativity,
including suppression and swapping, suffers from systematic bias (Abowd & Schmutte, 2015).

There are two ways that the microdata requirement could be met by the disclosure avoidance
system. The differentially private mechanism could directly output data consistent with the mi-
crodata requirement. Alternatively, the output of the differentially private mechanism could be
post-processed to conform to the microdata requirement. The first approach could theoretically
be achieved by using the exponential mechanism (McSherry & Talwar, 2007); however, that would
require the mechanism to use the fully specified output range schema because the exponential
mechanism relies on sampling from that range. For our application, that approach was infeasible
because it required enumerating the discrete elements of the output space that simultaneously met
the microdata, invariant, edit constraint, and structural zero requirements. Not only would this
have required a new theoretical apparatus to solve, but during the course of the development of
the DAS the requirements changed several times. Instead, the DAS uses post-processing to im-
pose these requirements hierarchically using a preexisting framework from the operations research
literature, specifically total unimodularity (Nemhauser & Wolsey, 1999, Sections III.1 and III.2).

There are some noticeable downstream consequences of imposing non-negativity. If the confi-
dential count of characteristic A in geography B is 0 and the TDA output of that count must be
non-negative, then the microdata-based estimator, constrained to use non-negative weights, will be
positively biased. This applies to both the post-processing case and the exponential mechanism
case above, but note that when using the discrete Gaussian mechanism, the noisy measurements
themselves are unbiased. In addition, the tabulation from microdata makes the errors in the disclo-
sure avoidance system data dependent. Controlling the algorithmic biases and the data-dependent
errors—properties due entirely to post-processing and not the DP mechanisms—is the hardest im-
plementation challenge for TDA (Abowd, Ashmead, Cumings-Menon, Garfinkel, et al., 2021). In-
ferential methods using a posterior sampling framework and the noisy measurements directly rather

5Positive tabulation weights greater than unity are typically used in sample surveys, as opposed to full-
enumeration censuses, with weights related to the inverse probability of selection into the sample. These
tabulation systems could be modified to use negative weights, but a different statistical model for the
meaning of the weight would be required.
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than the post-processed tabulations have shown promising results, though there are computational
limitations given the scope of the 2020 Census (Seeman et al., 2020).

A second, but related, requirement for the 2020 Census implementation was internal consistency,
which is a natural property of tabulating all statistics from the same record-level input data with
constant, non-negative weights (all unity for the 2020 Census). Internal consistency means that
a count of interest will be exactly the same if it appears in multiple tables or can be calculated
from taking the sum or difference of counts from other tables. Consistency is a consequence of the
algorithm producing privacy-protected microdata, but it is possible to have consistency without
requiring tabulation from microdata.

A third requirement for the TopDown Algorithm was the implementation of invariants, edit
constraints, and structural zeros. By invariants we mean counts that deliberately bypass the DP
mechanism and are reported with certainty exactly as they are tabulated from the confidential data.
The most notable invariants for the 2020 Census are the state total resident populations because
of their essential function in the apportionment of the House of Representatives. Edit constraints
and structural zeros are rules determined by Census Bureau subject matter experts, then applied
to the confidential data as part of the processing that produces the Census Edited File, one of the
two inputs to TDA. An example of an edit constraint is the requirement that a mother be at least
some number of years older than her oldest natural child.

The privacy loss associated with the invariants is not quantifiable in the standard DP literature,
and therefore the inclusion of invariants in the DAS complicates the interpretation of the privacy
guarantees. Instead of going into detail here, we save this topic for a separate paper and note that
the privacy-loss accounting for the DAS presented in this paper ignores any contributions from the
invariants.

One of the most important and challenging design considerations for the 2020 Census DAS taking
into account the multidimensional nature of the utility of the census data. While apportionment is
perhaps the most important use case, census data are used for hundreds if not thousands of public,
private, and commercial applications ranging from redistricting, to population age-distribution
estimation, to characteristics of the housing stock. Therefore, the TDA must produce output
that satisfies the same edit constraints, where feasible, with controllable accuracy, in the sense
of data utility, for all of its use cases. From an economic point of view, algorithmic design and
implementation for TDA can be seen as allocating a scarce resource (the finite information content
of the confidential data) between competing use cases (different accuracy measures) and respondent
privacy loss (Abowd & Schmutte, 2019).

Two excellent examples of competing use cases are redistricting and intercensal population esti-
mates. Redistricting consists of drawing contiguous geographic entities that are mutually exclusive,
exhaustive, and divide a political entity into voting districts of approximately equal populations.
These districts also must satisfy the anti-discrimination provisions in Section 2 of the 1965 Voting
Rights Act. To satisfy these requirements, nonpartisan redistricting experts work with the Census
Redistricting and Voting Rights Data Office (part of the Census Bureau) to designate the smallest
unit of geography—the atom from which the districts are assembled—and the taxonomy for race
and ethnicity categories, which must comply with Office of Management and Budget Statistical
Policy Directive 15 (Office of Management and Budget, 1997). Population estimates require annu-
ally updated populations for approximately 85,000 politically and statistically defined geographic
areas and age by sex by race by ethnicity tables for all counties in the US and municipios in Puerto
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Rico. Accuracy for redistricting targets geographic areas that are not yet defined when the dis-
closure avoidance is applied for statistics on population in 252 categories (voting age by race by
ethnicity). Accuracy for population estimates targets one statistic (total population) in predefined
geographies ranging in size from a few hundred to millions of people and about 2,000 statistics
(sex by age in single years by major race and ethnicity categories) in counties and municipios.
Accuracy for redistricting is improved primarily by allocating privacy-loss to the lowest levels of
geography (block groups and blocks in census terminology) and the most detailed race and ethnic-
ity summaries. Accuracy for population estimates is improved by allocating privacy-loss to more
aggregated geographies (counties and tracts) and favoring detail on age over detail on race and
ethnicity.

4. Sources of Uncertainty in the Census Estimation Problem

The use of DP mechanisms for the 2020 Census DAS will not be the first time uncertainty is
deliberately introduced into the tabular summaries from a decennial census to enhance disclosure
avoidance. And in any census, disclosure avoidance uncertainty is not the only source of uncertainty
affecting the published statistics. Historically, the decennial census has used data suppression, blank
and replace, swapping, and partial synthetic data for disclosure avoidance in the tabular summaries
(McKenna, 2018). In addition, sampling and coarsening along with swapping and partially syn-
thetic data were used for public-use microdata samples (McKenna, 2019). These methods also
create uncertainty in inferences using the published data. Suppression creates a nonignorable miss-
ing data problem because the suppression rule depends on the size of the statistic being suppressed
and on the correlation of the complementary suppressions with primary suppressions. Swapping
and partially synthetic data affect inferences because of the randomness used by both procedures
(Abowd & Schmutte, 2015). However, the Census Bureau, like most national statistical agencies,
does not provide any quantification of the uncertainty due to suppression, swapping or partial syn-
thesis. Consequently, the effect on inferences from the published data is usually not acknowledged
because researchers are unable to quantify it. For example, in the case of traditional swapping,
the parameters of the swapping algorithm are secret. In the case of disclosure avoidance systems
implementing DP mechanisms, the parameters and distributions of the mechanism’s randomness
are public and therefore can be quantified. TDA is an inference-valid disclosure avoidance system.
Its uncertainty can be quantified and that quantification can be used to guide inferences from the
published data; though, this can often be non-trivial.

The Census-taking process itself can be viewed as a random event. Modern incomplete data
inference has formalized the many reasons why a realized census does not produce perfect, complete
data. Post-enumeration surveys have shown the under-coverage of persons with some characteristics
and the over-coverage of persons with other characteristics (Hogan et al., 2013). Additionally,
observed data items can be missing or erroneous for some individuals. Given the observed data,
missing data techniques are used to produce the Census Edited File (CEF)—the final version of
the confidential census data. Statistically, the CEF is the completed census data from a collection
of single-imputation missing data models.6 In the CEF, there is a record for every housing unit,
occupied group quarters resident, and housing unit resident person alive on April 1, 2020 with all

6We use the term “completed data” in the sense of Rubin (1974, 1976) to mean a data set with no missing
data because all missing values have been imputed.
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tabulation variables containing valid responses on every record. There is an enormous investment
in the technology of specifying this ancillary estimator for the completed census data, given the
observed census data, even when there is no adjustment for differential net under-coverage. Finally,
disclosure avoidance techniques are applied to these completed census data to produce tabular
summaries that protect confidentiality. In this paper, we use the CEF as the standard for estimating
the accuracy of the DAS output. For better understanding the uncertainty introduced by disclosure
avoidance, we compare the DAS output to small-scale simulations that quantify the uncertainty
from census operational, measurement and coverage errors for the 2010 Census (Bell & Schafer,
2022).

5. Redistricting Data (P.L. 94-171) Summary File

The Redistricting Data (P.L. 94-171) Summary Files are an essential data product as they are
basis for state redistricting, official population counts, and other statutory uses. The tables are
therefore sometimes called the “redistricting data” tables. Before going into additional details, it is
important to have a sense of the geographic hierarchy that the Census Bureau uses in the creation
of data products.7 The primitive element of the tabulation geographic hierarchy is the census block.
All other geographic entities (states, tribal census areas, counties, places, etc.) can be defined as
aggregations of blocks. The “spine” of the tabulation geographic hierarchy consists of the U.S.,
states (including the District of Columbia), counties, tracts, block groups, and blocks.8 In each
case, the entities at lower levels of geography on the spine aggregate without partitions to entities
above them. That is, on the tabulation geographic spine a block belongs in one, and only one,
block group; a block group belongs in one, and only one, tract; and so on up the spine. This
tabulation geographic spine plays an important role in the TopDown Algorithm. Other geographic
aggregations (e.g., Congressional districts, ZIP Code tabulation areas, incorporated places, etc.)
are considered “off-spine” because they don’t fit directly onto the tabulation spine’s hierarchy.

5.1. Schema. The redistricting data tables for 2020 (U.S. Census Bureau, 2020a) are

(1) P1: Race
(2) P2: Hispanic or Latino, and not Hispanic or Latino by race
(3) P3: Race for the population 18 years and over
(4) P4: Hispanic or Latino, and not Hispanic or Latino by race for the population 18 years

and over
(5) P5: Group Quarters (GQ) population by major GQ type
(6) H1: Occupancy status.

Each table is produced down to the census block level. In order to tabulate from microdata, it is
necessary to consider only a subset of census attributes with mutually exclusive levels. We designate
these as the detailed queries for the person and housing-unit data, respectively. For person data the
following attributes and levels constitute the detailed query to create the redistricting data tables:

(1) Block. 5,892,698 levels9

7See https://www2.census.gov/geo/pdfs/reference/geodiagram.pdf for additional details.
8For the Commonwealth of Puerto Rico, the hierarchy is P.R., municipios, tracts, block groups, and

blocks.
9This is the number of blocks in 2020 with at least one housing unit or at least one occupied GQ.
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(2) Household or Group Quarters Type. 8 levels: household, correctional facilities for adults,
juvenile facilities, nursing facilities/skilled-nursing facilities, other institutional facilities,
college/university student housing, military quarters, other noninstitutional facilities;

(3) Voting Age. 2 levels: age 17 or younger on April 1, 2020, age 18 or older on April 1, 2020;
(4) Hispanic/Latino origin. 2 levels: Hispanic/Latino, not Hispanic/Latino;
(5) Census race. 63 levels: every combination of Black/African American, American In-

dian/Native Alaskan, Asian, Native Hawaiian/Pacific Islander, White, and some other
race, except “none of the above.”

Excluding block, there are 2,016 mutually exclusive, exhaustive combinations of these attribute
levels. Including block, there are 11,879,679,168 levels, of which the number of persons in each must
be output by the DP mechanisms so that TDA can be used to tabulate each of the redistricting
data person-level tables.

For housing-unit data the following attributes and levels constitute the detailed query to create
the redistricting data tables:

(1) Block. 5,892,698 levels;
(2) Occupancy status. 2 Levels: occupied, vacant.

Therefore a total of 11,785,396 mutually exclusive, exhaustive combinations of the attribute levels
must be output by the DP mechanisms so that TDA can be used to tabulate each of the redistricting
data housing-unit tables.

5.2. Invariants. In addition to the measurements associated with the specified tables, the TDA is
programmed to bypass the DP mechanisms when instructed by policymakers at the Census Bureau.
Queries that bypass DP mechanisms are called invariants. Mathematically, an invariant is equiv-
alent to designating infinite privacy loss for the specified tabulation, putting such queries outside
the formal guarantees of differential privacy. In addition, invariants challenge the implementation
of TDA because they may force the post-processing phase of TDA to attempt to solve computa-
tionally infeasible problems (see Section 7). As a consequence, the Census Bureau policymakers
have specified invariants only when there was either a Constitutional mandate or an operational
constraint in the conduct of the census.

The Constitutional constraint comes from the mandate to apportion the House of Representatives
based on the “actual Enumeration” of the population on census day. Technically, this constraint
only requires the allocation of the seats in the House to be invariant—not subject to changes due
to the confidentiality protection system; however, DSEP determined that setting the populations
of the fifty states, District of Columbia, and Commonwealth of Puerto Rico invariant was the
most transparent and practical way to accomplish this objective. The policymakers accepted the
risk associated with releasing these data outside the enhanced protections provided by differential
privacy; that is, aggregation is the only disclosure avoidance applied to the state populations.

The operational constraints come from the methods used to keep the Census Bureau’s Master
Address File (MAF)—the frame for the decennial census and many other surveys—up to date.
The MAF is a database of known addresses and features or characteristics of these addresses.
The most important feature is living quarters, which means that the address designates a domicile
capable of housing at least one human being. Fixed domiciles come in two types: housing units,
which usually domicile a single household, and group quarters, which usually domicile a group of
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unrelated individuals.10 There are also living quarters that are not fixed domiciles such as service-
based facilities (soup kitchens, shelters, etc.) and transient locations (tents, campgrounds, etc.).
In addition, there are addresses for facilities that are not deemed living quarters at all, such as
businesses, highway medians, and fire hydrants.

Maintaining the MAF is a continuous process involving many operations. A few are salient to
the disclosure avoidance system. First, by statute, the Census Bureau conducts the Local Update
of Census Addresses (LUCA) late in the census decade. The LUCA operation enlists partners
at all levels of government—states, recognized tribes, counties, and municipalities—to review the
addresses in the MAF. In support of this operation, the Census Bureau publicly distributes certain
summaries of the MAF, among these public tabulations are the number of addresses in each block
that represent housing units and the number that represent group quarters of different types.
While the addresses associated with these housing units and group quarters remain confidential,
the counts are used to guide local partners to areas they believe may be incomplete. In these
areas, the local partners supply candidate addresses, which are used to update the MAF. Second,
throughout the decade, the Census Bureau cooperates with local expert demographers to update
the location and types of group quarters facilities in an area. Since group quarters are in scope
for the American Community Survey, this cooperation also affects that survey. Critically, the local
demographers use public information on facilities like prisons, nursing homes, dormitories, and
barracks to facilitate timely updates of the MAF group quarters data. For operational reasons,
then, the Census Bureau treats the count of physical addresses on a block, their designation as
housing units or group quarters, and the type of group quarters facility as public information. Note
that while unoccupied (vacant) housing units are enumerated in the census, vacant group quarters
are not. Hence, TDA treats housing units and occupied group quarters as invariant. The Census
Bureau policymakers interpret this decision as requiring the disclosure avoidance to be consistent
with public information. This decision means that a prison, or other group quarters, will be properly
labeled in census tabulations if it is properly labeled in the confidential data, but the number and
characteristics of the population living in those facilities or in housing units is protected by the DP
mechanisms.

The complete list of invariants implemented in TDA is:

(1) total population for each state, the District of Columbia, and Puerto Rico;
(2) the count of housing units in each block, but not the population living in these housing

units;
(3) the count and type of occupied group quarters in each block, but not the population living

in these group quarters.

5.3. Edit constraints and structural zeros. Edit constraints and structural zeros occur when a
particular combination of values of the characteristics in the confidential data is deemed impossible
a priori; that is, before any data are collected. For example, if the relationship of person two to
person one (also called the householder) is “natural child,” then person two cannot have age greater
than person one’s age. Edit constraints and structural zeros modify the sample space of the final

10The technical definitions are based on whether or not there are separate entrances and shared facilities
like kitchens and bathrooms, not on the familial relations among the inhabitants. Like many dichotomies
applied to human populations, there is a gray area where housing units and group quarters are difficult to
distinguish.
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output data. In the case of the DAS, this would be the post-processed results (MDF) but not the
intermediate noisy measurements.

Edit constraints are conceptually different from invariants; however, when examining the full
constraint set in TDA, they are mathematically indistinguishable. Nevertheless, it is important to
maintain the distinction. Edit constraints and structural zeros are imposed on the confidential data
during the process of creating the Census Edited File. They are never violated in the input data to
TDA by design; therefore, they must also be respected in the output data. Invariants, on the other
hand, are statistics computed from the input data that deliberately skip the differential privacy
mechanism. They are passed to the post-processing without noise injection. Hence, the distinction
is that edit constraints and structural zeros define the sample space for the census. They are
features of its design, not part of the information collected from respondents. Edit constraints and
structural zeros are public information known before data collection while invariants are statistics
collected in the census data that bypass the confidentiality protection system by policy.11

The complete edit specification for the 2020 Census Edited File is not a public document, nor is
the complete edit specification for the 2010 Census Edited File. The version of TDA that processed
the redistricting data product contains only a few edit constraints and structural zeros. The most
important of these are listed here:

(1) for the race variable, the combination “none of the above” is a structural zero;
(2) for occupancy status, there are no unoccupied group quarters.

The race constraint is derived from OMB Statistical Policy Directive 15 (Office of Management
and Budget, 1997), which requires the use of the categories listed in the redistricting data schema
except for “some other race,” which was Congressionally mandated (111th Congress, 2009). Because
a respondent cannot select “none of the above,” there are 26 − 1 allowable combinations of the six
race categories, not 26. There are unoccupied group quarters on enumeration day, but they are
removed from the MAF universe used in the Census Edited File.

The structural zero on unoccupied group quarters, the occupied group quarters invariant, and
the housing unit invariant interact in creating the TDA constraint set. If there is an occupied
group quarters facility of a particular type in the relevant geographic area, then at least one person
must be assigned in post-processing to that facility. If there is a housing unit in the particular
geography, however, there is no similar requirement because occupancy status is not invariant for
housing units. However, the number of householders (person one on the questionnaire) cannot be
greater than the number of housing units. Aside from this, TDA treats the data for persons and
housing units separately. Hence, occupancy status is protected without reference to the person
data. This interaction is deliberate. Joining the housing unit data to the person data and then
applying a differentially private mechanism to the joined data is a much harder problem because
the sensitivity of queries (see Definition 3) about the composition of a household, including how
many persons live in the housing unit, is the maximum allowable household size, not one. Join
queries like this will be processed by DP mechanisms implemented in algorithms that do not post-
process to microdata. These data products will be released at a later date as part of the Detailed
Demographic and Housing Characteristics (Detailed-DHC) data release. Users may be tempted to
divide the total household population in a particular geography from table P1 by the total number

11Invariants complicate the standard privacy semantics. Edit constraints and structural zeros do not.
We save this discussion for future work.
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of occupied housing units in that geography from table H1. For well-populated geographies this
answer will be useful; however, for sparsely populated geographies it will not be reliable. The join
query DP mechanisms implemented in the Detailed-DHC are designed to produce reliable data for
average household size.

6. Mechanism Overviews

6.1. The discrete Gaussian mechanism. The TDA and the block-by-block algorithm, which we
describe in Appendix A, rely on DP mechanisms responsible for generating the noisy measurements.
For the TDA, we use the discrete Gaussian mechanism, based on the discrete Gaussian distribution
(Definition 4). The multivariate discrete Gaussian mechanism is described in Theorem 1. Setting
a = 1 yields the univariate case (Canonne et al., 2020, 2021). Let Z represent the space of integers
and Xn a dataset of n records where X is the sample space or data universe. Theorem 1 uses
the concept of query sensitivity provided in Definition 3. Query sensitivity is important because it
affects the scale of the noise distribution for a fixed privacy-loss value.

Definition 3. (Lp Query Sensitivity) For p ∈ (1, 2, . . .), the Lp sensitivity of the query q : Xn →
Ra for the dataset with sample space Xn is defined as

max
x∼x′∈Xn

(

a∑
j=1

|qj(x)− qj(x′)|p)
1
p .

Definition 4. (Discrete Gaussian Distribution) Let µ, σ ∈ R and σ > 0. The discrete Gaussian
distribution, denoted by NZ(µ, σ

2), with location parameter µ and scale parameter σ has probability
distribution

P (X = x) =
exp(−(x− µ)2/2σ2)∑
y∈Z exp(−(y − µ)2/2σ2)

∀x ∈ Z.

Theorem 1. (Multivariate Discrete Gaussian Mechanism; Theorem 14 Canonne et al., 2021 ) Let
σ1, · · · , σa > 0 and ρ ≥ 0. For a query q : Xn → Za, suppose the rescaled query q′ = ( q1σ1

, . . . , qaσa
)

has L2 sensitivity at most
√
2ρ. Define a randomized algorithm M : Xn → Za by M(x) = q(x)+ y,

where yj ∼ NZ(0, σ
2
j ) independently for j = 1, · · · , a. Then M satisfies ρ–zCDP.

The discrete Gaussian mechanism was not always the DP mechanism in the TDA. In earlier work
we used the geometric mechanism, which like the discrete Gaussian mechanism produces errors with
integer values but uses the double-geometric rather than the discrete Gaussian distribution. The
discrete Gaussian mechanism was ultimately chosen based on empirical tests of the accuracy of
the TDA using each mechanisms with comparable privacy-loss budgets. The discrete Gaussian
distribution has smaller tail probabilities than the double-geometric distribution, and this prov-
ably reduces the worst-case errors associated with the microdata requirement (Abowd, Ashmead,
Cumings-Menon, Garfinkel, et al., 2021).

6.2. Notation. The census-taking process results in a person-level dataset of n records with k

characteristics (e.g., age, race, ethnicity) including geography. Each characteristic may take exactly
one of a finite number of values, which define the sample space, χ. An equivalent definition exists
for the sample space of housing units. The sample space for persons is defined by enumerating
all combinations of the values of every person characteristic measured in the census. Thus, c =

Cardinality(χ) is the number of rows in χ, and represents the total possible number of combinations
of the characteristics of the persons. For the 2020 Census Redistricting Data (P.L. 94-171) Summary
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File, c = 11, 879, 679, 168 for the person-level data and c = 11, 785, 396 for the housing-unit-level
data. Of course, these calculations show the dimensionality of these sample spaces for a single
person or unit. There are combinatorially more feasible databases satisfying these schemas that are
also consistent with all invariants.

Geographic levels play an important role in the methodology. It is useful to consider the car-
dinality of the sample space disregarding geography. Let the sample space without geography be
represented by χ∗ and its cardinality by c∗ = Cardinality(χ∗). For the redistricting data case,
c∗ = 2, 016 for the person-level data and c∗ = 2 for the housing unit level data.

Instead of representing the data as an n×k person-level matrix (also called a table in the database
literature), another way to represent the data is as a fully saturated contingency table (also called
a histogram in the privacy-preserving data publication literature) where every cell corresponds to
a possible record type as defined by the schema and its value is the number of records of that
type. Rather than using a multi-dimensional array, such as a contingency table, it is notationally
convenient to consider instead the flattened table, a length c vector flattened in any predefined
ordering that spans the schema. Let x represent the contingency table vector.

A set of linear queries on x is represented by an (a×c) matrix Q and the vector of query answers of
length a is obtained by matrix multiplication of the query matrix and the contingency table vector:
Qx. Let M̃ represent a differentially private random vector of answers to a set of linear queries.
Measurements have the form M̃ = Qx + y, where y is a vector of independent random variables.
Specifically in the context of the TDA, we assume y ∼ NZ(0, σ

2
j ), where j = 1, · · · , a, a discrete

Gaussian distribution with potentially unique variances σ2
j for each of the a noisy measurements.

In the TDA, to turn the set of σ2
j values into a ρ value, we use Theorem 1. See Appendix B for

additional details.
A key feature of census data and tabulation products is geography. We use the symbol Γ to

represent a geographic hierarchy (US, state, county, tract, block group, block for the United States;
PR, muncipio, tract, block group, block for Puerto Rico.): a directed, rooted tree with γ0 as its
root. Given a node γ ∈ Γ, we let parent(γ) represent its parent geographic node in the hierarchy
and children(γ) represents the set of geographic nodes that are its children. We let leaves(γ)

represent all of the leaves under node γ and leaves(Γ) to represent all of the leaves. In particular
leaves(γ0) = leaves(Γ). We refer to the set of all nodes at a fixed distance from γ0 as a geographic
level, which in the case of the census may be one of the US, state, county, tract, block group, or
block.12

Let xγ be the contingency table vector for a specific geographic node γ. By definition, all cells
of the vector not associated with the given geography are 0. Therefore it is convenient to view xγ

as a length c∗ vector, disregarding the geographic dimension of the contingency table. Similarly,
let M̃γ = Qxγ + y be a geography specific version of the differentially private random vector of
answers to a set of linear queries. For the purposes of the TDA, it is necessary to group all the
children of a node together to jointly estimate the solution. Let xchildren(γ) be the contingency table
vector obtained by stacking xchild for every child ∈ children(γ), making it a (c∗ × |children(γ)|)
length vector where |children(γ)| is the number of children of node γ. Let M̃children(γ) represent a
the similarly stacked version for the differentially private measurements.

12There are additional tabulation geographies such as Census-designated places and American Indian-
Alaska Native-Native Hawaiian tribal areas all of which can be constructed as aggregations of blocks.
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The TopDown Algorithm processes the noisy measurments from the DP mechanism and the
invariants into an estimate of the contingency table vector. We use x̂ or equivalently x̂γ , ∀ γ ∈ Γ,
to denote the output of TDA.

Depending on the specifics of the invariants and edit constraints, both equality and inequality
constraints may be imposed within TDA. Specifically, in the redistricting data use case, inequality
constraints are due to invariants imposed on the counts of housing units and occupied group quarters
because these put bounds on the number of people that must be in that geographic unit. For
example, for the invariant on the number of occupied group quarters facilities of a certain type
by block, there must be at least one person per group quarters type in that block because vacant
group quarters facilities are out-of-scope for the census. We denote the constraints on the algorithm
output as a result of the invariants as a set of equality and inequality constraints:

Ceqx̂ = ceq

Cux̂ ≤ cu,

where ceq and cu are calculated from x and possibly additional housing unit data. For example,
total state populations are invariant; therefore, the state population for each state is an element
of ceq and the rows of Ceq force the elements of x̂ that correspond to components of the state
population to sum to the invariant total. Another example is group quarters populations in any
geographic unit. Group quarters must be occupied; therefore, if k occupied group quarters facilities
of a given type are present in a particular geographic unit, this generates a lower bound constraint
of k that is an element of cu, and the rows of Cu force the elements of x̂ that correspond to
components of the group quarters population of that type to sum to at least k.13

6.3. Problem statement and utility criteria. The census ultimately produces a set of tabula-
tions that can be characterized as a query matrix A multiplied by the contingency table vector.
Without any disclosure avoidance applied, the tabulations would be calculated as Ax. While not
the true value as this term is defined in classical statistics—the unknown population quantity that is
the estimand for a census or survey—because of the uncertainty described in Section 4, it is treated
as the reference value for purposes of disclosure avoidance because it is the result of answering
the query directly from the confidential data. Therefore, the goal of the DAS is to implement a
sequence of algorithms that gives optimal tabular estimates Ax̂ relative to Ax according to some
metric for a given privacy-loss budget.

The utility of the algorithms developed for the redistricting data was first and foremost designed
to meet stringent fitness-for-use accuracy targets for the redistricting and Voting Rights Act use
cases. This is a challenging task because the geographic units of interest are the voting districts
that will be drawn after the data are published. Hence, the target geographies cannot be specified
in advance. Fortunately, these voting districts divide political entities like states, counties, incorpo-
rated places, school districts, and tribal areas whose geographies are pre-specified. Therefore, error
metrics that optimize accuracy within these predefined political entities help properly control the
metrics for their equal-population future voting districts. The collections of blocks in the voting
districts are not arbitrary. They cover the political entity and form aggregates of approximately
equal total population. When the political entity has a low population, there are usually only a few

13We specify all inequality constraints as upper bounds in this paper and implement lower bounds by
negating the inequality.
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voting districts or none at all. While a complete description of the criteria for forming legislative
districts is beyond the scope of this paper, more details about the compactness, contiguity, political
boundary, and community of interest requirements are provided by the nonpartisan organization
that represents states’ interests in the development of redistricting data, the National Conference
of State Legislatures (2021).

We performed explicit experimental parameter tuning using 2010 Census data to ensure that
the largest racial/ethnic group (as defined by the OMB in Statistical Policy Directive 15) in off-
spine geographies (e.g., minor civil divisions, Census places, American Indian Reservations, etc.)
with populations of at least 500 people, expressed as a percentage of the total population, was
within ±5 percentage points of the enumerated percentage at least 95% of the time.14 We also
examined the same metric expressed as a percentage of the voting-age population and found that
controlling the ratio to the total population also controlled the error in the percentage of the largest
race/ethnicity group in the voting-age population. This utility goal was developed in consultation
with stakeholders and is analyzed extensively in Wright and Irimata (2021).

Independently, we also evaluated the performance of TDA by examining the absolute and relative
error of many statistics by quantiles of the count in the 2010 CEF. These error metrics were used for
total population, voting-age population, number of races, population in each OMB race category,
and population in each ethnicity category within OMB race category. These quantile statistics were
used primarily to determine the interactions of changes in the privacy-loss budget allocation among
the queries, which cannot be done ex ante because, while the errors from the DP mechanism are
independent of the data, the errors in post-processing are not.

Our accuracy assessments included many metrics (U.S. Census Bureau, 2020b, 2021c) using the
2010 Census data that were developed by demographers at the Census Bureau or suggested by
external users. They included many different error measures such as mean absolute error, mean
absolute percent error, percent difference thresholds, outliers, as well as different characteristics of
interest relevant to redistricting (total populations, total population 18 years and over, occupancy
rates, Hispanic or Latino origin population, etc.) across many different geographic levels.

The existing policy and scientific literature provide very little guidance on managing a privacy-
loss budget to trade-off accuracy on multiple dimensions. When tuning the TDA, our experiments
were designed to find the smallest privacy-loss budget that met specified accuracy goals. In partic-
ular, we used a tight standard for redistricting data accuracy in the smallest voting districts that
the Department of Justice Voting Section provided as examples of Section 2 scrutiny under that
law. Finding the minimum privacy-loss budget that could achieve this goal illustrated where other
accuracy objectives deteriorate—in particular, statistics at the tract and county level, which were
down-weighted by the redistricting accuracy measure. Other subject matter experts, internal and
external, then laid out their accuracy goals for these other statistics. Internal statistical disclosure
limitation experts, including some of the authors of this paper, demonstrated that these accuracy
goals—redistricting and general demographic—could be achieved with a modest privacy-loss budget

14For practical reasons related to the clock time required to run TDA and the license limitations on
the number of simultaneous numerical optimization instances we could run (2048), we estimated the 95%

compliance using geographic variation within the same geounit type (county, block group, minor civil
division, AIAN tribal area, etc.). At the conclusion of these experiments, we confirmed compliance with
the 95% target using 25 independent runs of TDA with the April 2021 parameter settings as discussed in
Section 8.
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at the block level. The iterative experimental tuning process is described in more detail in Section
8.

The statistical optimization problem can be summarized as: given accuracy targets based on
Ax̂ relative to Ax, choose query matrices Q∗ = {Q1,Q2 · · · ,Qm} with corresponding privacy-loss
budgets ρ∗ = {ρ1, ρ2, · · · , ρm} and estimator

x̂ = g (M∗,Q∗, ρ∗,Ceq, ceq,Cu, cu)

that meets the accuracy targets such that the total privacy-loss budget
∑m
i=1 ρi is minimized,

where x̂ ∈ Z0+
d , meaning the estimated vector is of length d and has non-negative integer elements,

and Ceqx̂ = ceq, and Cux̂ ≤ cu, meaning the solution satisfies the constraints. Here we denote
M∗ =

{
M̃1, M̃2, · · · , M̃m

}
as the differentially private vector of noisy measurements corresponding

to Q∗ and ρ∗. Note the three major elements of the algorithm design:

(1) choosing which query matrices to use differentially private noisy measurements;
(2) choosing the accuracy of each of the noisy measurements; and
(3) optimally combining the noisy measurement information to produce a non-negative integer

estimate of x that satisfies all constraints.

While these algorithm elements should work hand-in-hand, we note that there could be many
variations of (3) using the same measurements that are a product of elements (1) and (2) that
produce results with good utility. Not only are there many objective functions that can be used for
optimization, but many variations of methods to produce non-negative integers satisfying a set of
constraints. Over the course of this work, we experimented with each of these elements in order to
build the best algorithm for key redistricting and demographic use-cases.

6.4. Queries. While it would be possible to ask a linear query Q with generic integer elements,
we restrict ourselves to queries that consists of only binary elements. Furthermore, while mathe-
matically it is often convenient to write a single query matrix for the entire problem or for a single
geography, in practice we think of sets of queries stacked together into a single query matrix and
define them in terms of dimensions of the schema. In order to explain the specifics of the queries
used in TDA, as listed in, for example, Table 7, we describe here the structure of the complete query
matrix, which is partitioned by level of the geographic hierarchy and marginal query group within
each geographic level. Privacy-loss budget (ρ) allocations are made to the geographic level and then
to the marginal query group within each level. When these partitions are stacked vertically within
geographic level and concatenated horizontally across the geographic hierarchy, they generate the
full linear query matrix.

We use the term marginal query group to refer to a matrix with rows given by linear queries
such that the product with the data vector, x, provides the estimates for a given marginal of the
data.15 For example, in the redistricting data, we might ask the census race marginal query group
and the voting-age marginal query group for a given geography. By the census race query group, we
mean the 63 total population counts in each of the OMB-designated race categories for the given
geography. By the voting-age query group, we mean the 2 total population counts for 17 or younger

15DAS queries can be more completely characterized as being constructed by two steps. (a) Defining a
list of “recodes” of individual schema attributes that could drop or skip some levels of the attribute and/or
aggregate or union some attributes together. In general, these recodes-of-attributes are then mutually
exclusive but not necessarily exhaustive; and (b) taking a Cartesian product represented via Kronecker
products in sparse matrices of these recodes.
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and 18 and older. We could also ask the query group census race by voting age which would be 126
counts of each of the levels of OMB-designated race crossed by voting age. In addition to individual
or crossed dimensions of the schema, we also consider the cross of all dimensions of the schema as
well as the collapse of all dimensions, which we give special names: the detailed query and the total
query, respectively. Lastly, we also consider Cartesian products of mutually exclusive collapses of
a schema attribute as a query. For example, we could collapse the 63-level census race attribute
into a 3-level attribute with levels: 1 race selected, 2 races selected, and 3 or more races selected.
A query strategy may also include Cartesian products of collapsed categories.

The individual marginal query groups we consider have two important properties. They are
exhaustive in terms of the levels (we do not query 18 and older without also querying 17 and
younger) and the levels are mutually exclusive. Along with the use of binary elements, these
properties ensure that the L2 sensitivity of a single marginal query group is at most and

√
2. Lp

sensitivity for a single query is defined in Definition 3. In the query group it means for any two
possible neighboring databases, where neighboring is defined as the result of changing the value of
a single record in the database (which maintains the total number of records), the maximum over
all the queries in the group is at most

√
2. Similarly to the sensitivity of a single query (Definition

3), the sensitivity of a query group is important because it affects the scale of the noise needed for
a fixed privacy-loss or ρ value. The larger the sensitivity, the larger the scale of the noise that is
needed in the algorithm. By construction, all queries in a query group receive the same precision
(a function of the ρ allocation and the sensitivity) for their DP mechanism noisy measurements,
though the precision given to each query group may differ both within and between geographies.

6.5. The TopDown Algorithm. The motivation for the TDA is to leverage the tree-like hierar-
chical structure of census geographies in order to produce estimates of the contingency table vector
that are more precise than algorithms focused on directly and independently estimating block-level
vectors then aggregating16 in a scalable manner. The TDA can be thought of as two phases, a
measurements phase and an estimation phase.17 Table 1 presents a schematic summary of the
algorithm.

First, in the measurement phase, sets of differentially private noisy measurements are taken about
key queries at each of the geographic levels in the hierarchy. Because queries at different geographic
levels (say block and tract) will involve the same individuals, the total privacy loss will be the
summation of the privacy loss at the individual geographic levels. Therefore, the distribution of the
total privacy-loss budget across levels of the geography as well as the queries within a geographic
level must be chosen with care. In the estimation phase, the goal is to produce a non-negative
integer estimate of the contingency table vector from the differentially private noisy measurements.

As the name implies, estimation is carried out sequentially, starting with the root geography
(US). The algorithm estimates the non-negative integer US-specific contingency table vector from
the set of US-level differentially private queries on the data, maintaining any equality or inequality
constraints implied by the invariants or due to edit constraints and structural zeros. Due to the
complexity of the problems, this is done in a two-step manner. First, we estimate a constrained
non-negative weighted least squares solution from the US-level differentially private queries that
respects all constraints implied by the invariants. Second, we perform a controlled rounding that

16See Appendix A for more information.
17In other contexts, the estimation phase has sometimes been called post-processing.
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Table 1. The TopDown Algorithm Summary
Measurement Phase
(1) For level i ∈ {US, state, county, tract,block group, block}

(a) Determine the privacy-loss budget for the level i;
(b) Take differentially private noisy measurements M̃γ for all nodes in level i.

Estimation Phase
(1) For the US root node γ0 estimate the contingency table vector xγ0 by

(a) Estimating a non-negative solution x̃γ0 from the set of differentially private
noisy measurements M̃γ0 , invariants, and edit constraints at the US level;
(b) Estimating a non-negative integer solution x̂γ0 from x̃γ0 by controlled rounding.

(2) For level i ∈ {state, county, tract, block group, block}, let Pi represent the set of
distinct parents among all nodes at level i. For each parent node γ ∈ Pi, estimate
the joint contingency table vector xchildren(γ) by

(a) Estimating a non-negative solution x̃children(γ) from the set of differentially private
noisy measurements M̃children(γ), invariants, edit constraints, and aggregate constraints
enforcing that the children sum to x̂γ ;
(b) Estimating a non-negative integer solution x̂children(γ) from x̃children(γ) by
controlled rounding.

finds a nearby non-negative solution that also respects the constraints. See Section 7.1 for more
detail. Once the solution is found, the US-level estimated contingency table vector is considered
fixed and used as an additional constraint on the next subproblem in the sequence.

The algorithm then estimates the state-level contingency table vectors, enforcing an aggregation
constraint to the US-level contingency table vector and using the state-level differentially private
measurements on the data. This is done using a similar two-step process: first, solving a weighted
non-negative least squares problem; then, solving a controlled rounding problem. However, in
addition to any constraints that are the product of invariants or edit specifications, an aggregation
constraint is added to both subproblems to ensure that the estimated state-level contingency table
vectors sum to the US-level estimated contingency table vector.

Fixing the estimated state-level contingency table vectors, the estimation steps are repeated
within each state in order to estimate each of the county-level contingency table vectors, enforcing
aggregation constraints for each state. The algorithm then proceeds iteratively to additional ge-
ographic levels (tract, block group, and block) until the contingency table vector is estimated for
each block. In each step, the differentially private measurements taken at that level are used along
with constraints due to invariants, edit specifications and aggregation.

7. Estimation Routines and Improvements

7.1. Basic estimation routines. In an ideal scenario, the contingency table vector x for all blocks
could be estimated in its entirety simultaneously, minimizing error relative to all differentially
private measurements at once and respecting invariant constraints; however, the scale of such a
problem in the decennial census is several orders of magnitude too large given current computing
limitations. Therefore, one way to view TDA is that it breaks the problem down into smaller, more
computationally tractable sub-problems. Even after doing so, the size of the problems remains
quite large. The desired output of the algorithm is a non-negative integer vector x̂ and therefore
an integer programming approach would be the natural fit. Unfortunately, the size and complexity
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of the sub-problems is still too large to directly solve as an integer program. Therefore, we further
break down each optimization step into two sub-problems: 1) a constrained weighted least squares
optimization that finds an estimated non-negative continuous-valued contingency table vector; and
2) a controlled rounding problem that solves a simpler integer program than in the direct method
and yields a non-negative integer contingency table vector. For simplicity, we refer to these as the
least squares optimization problem and the rounder optimization problem, respectively.

In Sections 7.1.1 and 7.1.2, we present the estimators for the least squares and rounder op-
timization problems, respectively, that we initially developed. Then, we provide the details of
enhancements to these basic estimators using more complex estimators that find a solution by per-
forming a series of optimizations and constraining passes. We detail these more complex estimators
in Sections 7.2 - 7.3.

7.1.1. The basic least squares estimator. There are two versions of the least squares estimation
problem depending upon whether the subproblem includes a single node (as in Step (1)(a) of the
estimation phase of TDA) or multiple nodes (as in Step (2)(a) of the estimation phase of TDA). Let
W be the diagonal matrix with the inverse variances of the differentially private random variables
along its diagonal. Then, the least squares estimator for a single node γ is

x̃γ ← argmin
xγ

(Qxγ − M̃γ)
⊤W(Qxγ − M̃γ)(7.1)

subject to:

xγ ≥ 0; and

Ceqxγ = ceq; and

Cuxγ ≤ cu.

Now, let W be the diagonal matrix with the inverse variance of the differentially private random
variables for each of the children of node γ along its diagonal. While choices of W other than
inverse variance were explored (e.g., constant, square-root of variance), both theoretically (according
to standard weighted least squares theory) and in practice, the inverse variance provided the best
performance overall. Let Ic∗ represent a identity matrix of size c∗. Then the least squares estimator
for the joint solution for the children of γ is

x̃children(γ) ← argmin
xchildren(γ)

(Qxchildren(γ) − M̃children(γ))
⊤W(Qxchildren(γ) − M̃children(γ))(7.2)

subject to:

xγ ≥ 0; and

Ceqxchildren(γ) = ceq; and

Cuxchildren(γ) ≤ cu; and[
Ic∗ Ic∗ · · · Ic∗

]
xchildren(γ) = x̂γ .

In (7.1) and (7.2) we use generic notation for Q,Ceq, ceq,Cu, and cu rather than node spe-
cific subscripts in an effort to simplify notation, though it should be noted that the values of
Q,Ceq, ceq,Cu, and cu will be different depending on the specific child or parent node.
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7.1.2. The basic rounder estimator. Similar to the least squares optimization problem, we specify
two versions of the solution depending on whether we are estimating over a single or multiple nodes.
Let ⌊x⌋ be the floor function (applied element-wise to a vector). Then the rounder estimator for a
single node γ is

x̂γ ←⌊x̃γ⌋+ ŷ(7.3)

ŷ = argmin
y

1⊤|x̃γ − (⌊x̃γ⌋+ y)|

subject to:

yi ∈ {0, 1} for yi elements of y; and

Ceq (⌊x̃γ⌋+ y) = ceq; and

Cu (⌊x̃γ⌋+ y) ≤ cu.

Let Ic∗ represent a diagonal matrix of size c∗. Then the rounder estimator for the joint solution for
the children of γ is

x̂children(γ) ←
⌊
x̃children(γ)

⌋
+ ŷ(7.4)

ŷ = argmin
y

1⊤|x̃children(γ) − (
⌊
x̃children(γ)

⌋
+ y)|

subject to:

yi ∈ {0, 1} for yi elements of y; and

Ceq
(⌊
x̃children(γ)

⌋
+ y

)
= ceq; and

Cu
(⌊
x̃children(γ)

⌋
+ y

)
≤ cu.[

Ic∗ Ic∗ · · · Ic∗
] (⌊

x̃children(γ)
⌋
+ y

)
= x̂γ .

DAS implements the rounder problem by subtracting the floor and minimizing the distance over
the fractional part of the target vector. This problem is feasible and efficiently solvable if it has the
total unimodularity (TUM) property (see Section 7.2).

7.2. Algorithmic improvements: Multi-pass least squares estimator. While we found that
the basic least squares estimator worked well overall, we observed a concerning trend in the bias of
the estimation of geographic totals. Even when these queries were asked with very high precision,
when combined in an optimization with a query with a large number of components (e.g., the
detailed query), the resulting estimated data vector would be less accurate on the target query than
would be expected. We know that this problem is due to the constraint that all cell counts must
be non-negative. We now understand that there is an inherent uncertainty principle limiting the
accuracy of inequality-constrained least squares. The maximum expected error in either the detailed
query or its total depends upon both the privacy-loss budget allocation and the total number of
queries (Abowd, Ashmead, Cumings-Menon, Garfinkel, et al., 2021).18 Managing this accuracy
trade-off between detailed and total queries, which is due entirely to the post-processing requirement
to produce privacy-protected microdata, motivated the algorithmic improvements discussed here.

18It is now understood that this problem is a direct consequence of requiring TDA to produce microdata.
It is not due to the use of DP mechanisms (Abowd, Ashmead, Cumings-Menon, Garfinkel, et al., 2021).
The result is related to the implementation difficulties studied in Balcer and Vadhan (2019).



The 2020 Census Disclosure Avoidance System TopDown Algorithm 24

To improve on the single-pass non-linear least squares estimator, we developed a multi-pass esti-
mator. Instead of attempting to find a data vector solution that minimizes errors for all noisy queries
at once, we use multiple passes of the optimizer to estimate increasingly more detailed tabulations
of the data vector. On each pass, after estimating one or more margins of the contingency-table
vector, we constrain the following passes to find a solution that maintains the previously estimated
margins. For example, for the redistricting data persons schema, we might first estimate and con-
strain the total population counts in a first pass. Then, estimate the detailed query in a second
pass subject to the constraint that its margin equals the total population count from the first pass.
Multi-pass processing, therefore, controls the algorithmic error due to the non-negativity constraints
by prioritizing the queries based on the expected size of the total query (total population before
voting-age population, etc.).

The input of the least squares multi-pass methods described here is a collection of marginal
queries and, for each such query group, the vector of DP random measurements for the query group.
Let k ∈ {1, . . . ,K} represent the passes such that x̃(k)

children(γ) is the estimated data vector after pass

k, Q(k) is the stacked set of query groups used for pass k, and M̃
(k)
children(γ) is the corresponding

DP random measurements. Let B(k) be the matrix formed by stacking query group matrices used
for pass k; it will be used for constraints in passes greater than k. For brevity, we omit the single
node version of the estimator and focus on the joint solution for the children of γ which is given by
x̃
(K)
children(γ), where the optimization routine is given by (7.5).

x̃
(k)
children(γ) ← argmin

xchildren(γ)

(Q(k)xchildren(γ) − M̃
(k)
children(γ))

⊤W(Q(k)xchildren(γ) − M̃
(k)
children(γ))(7.5)

subject to:

xchildren(γ) ≥ 0; and

Ceqxchildren(γ) = ceq; and

Cuxchildren(γ) ≤ cu; and[
Ic∗ Ic∗ · · · Ic∗

]
xchildren(γ) = x̂γ

If k > 1 :

|B(j)
(
xchildren(γ) − x̃

(j)
children(γ)

)
| ≤ τ̂ (j)1 ∀ j ∈ {1, . . . , k − 1}

The parameter τ̂ (j) represents a small positive constant to help ensure feasibility of future solutions.
Rather than specifying this number, we solve the following secondary optimization problem to
estimate it at the end of each pass k:

τ̂ (k) ← min
τ,xchildren(γ)

τ(7.6)

subject to:

|B(j)
(
xchildren(γ) − x̃

(j)
children(γ)

)
| ≤ τ1 ∀ j ∈ {1, · · · , k}

xchildren(γ) ≥ 0; and

Ceqxchildren(γ) = ceq; and

Cuxchildren(γ) ≤ cu; and



The 2020 Census Disclosure Avoidance System TopDown Algorithm 25[
Ic∗ Ic∗ · · · Ic∗

]
xchildren(γ) = x̂γ .

Note that the basic least squares estimator can be recovered by choosing K = 1 and including
all query groups for which we have DP random measurements. We have found it generally advan-
tageous to first estimate query groups with elements that are unlikely to be zero using an estimator
with negligible bias. Constraining the estimates in subsequent passes to have marginals that are
consistent with these earlier query group estimates has the additional effect of reducing the positive
bias on cell counts with true values that are zero. Our current estimation strategy limits the positive
bias of query group estimates in early passes by omitting query groups from the objective function
that are likely to have many true answers that are zero. For example, choosing the first pass to
only include query groups that are higher-order marginals (e.g. total, voting-age). However, note
that by excluding DP random measurements, we are not including all available information. Note
that the choice of query groups does not depend on the confidential data.

7.3. Algorithmic improvements: Multi-query multi-pass rounder. The basic rounder esti-
mator finds a nearby integer solution by minimizing the distance from the real-valued solution with
respect to the individual cell values while still respecting constraints. We found that, as the size of
the optimization problems grew, even though in the rounder solution individual cells were forced
to be close to their real-valued counterparts, the summation of many cells (e.g., a variable margin)
could still change by a large amount. Changes to the individual detailed cell values could add up
to make a large change in, for example, the voting-age population. To improve this behavior, we
developed an estimation routine that optimizes based on the distance from the real-valued solutions
to the queries used in the least squares estimator. Like the least squares multi-pass estimator, we
also allowed for multiple passes of the rounder at increasing levels of detail.

Because the non-negative least squares estimator is solved numerically, the amount of mass (ac-
cumulated fractional parts of the least squares solution) the rounder was responsible for estimating
increased as privacy-loss budgets increased. That is, as we increased the privacy-loss budget, we
wanted to ensure monotone convergence to perfect accuracy. However, when using the original,
basic single-pass rounder, as the privacy-loss budget increased many more cell estimates from the
least squares problem were 0.999 (not 1.0). As this happened, because the rounder is responsible
for estimating a total amount of mass that it is equal to the sum of the fractional parts of the
least squares estimator, the rounder became increasingly important to solution quality the larger
the privacy-loss budget. Rounding using only the detailed query answers is clearly an inferior es-
timator of most queries of interest compared to using all queries from the least squares solution.
Hence, basic rounding caused very troubling behavior: specifically, an intermediate region in which
increased privacy-loss budget resulted in poorer performance on utility metrics. When we imple-
mented multi-pass rounding, we also added the ability to specify additional queries as part of the
rounder’s objective function. TUM implies restrictions on these extra queries. Without violating
TUM, we inserted a single additional set of hierarchically related queries (a ‘tree of queries’) in this
way. This modification of the objective function solved the non-monotonicity problem.

Let k ∈ {1, . . . ,K} represent the passes such that x̂
(k)
children(γ) is the estimated data vector after

pass k,19 and Q(k) is the stacked set of query groups used for pass k (which can be different from the
query groups used in the multi-pass least squares estimator). Meanwhile, x̃children(γ) is the vector

19Note that the number of passes for the rounder can be different from the number of passes for least
squares.
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produced by the multi-pass least squares estimator. Let B(k) be the matrix for the stacked query
groups that will be the used as constraints in passes greater than k. For brevity, we omit the single
node version of the estimator, and focus on the joint solution for the children of γ. The solution is
denoted by x̂

(K)
children(γ), the terminal value in the following optimization letting k = 1, . . . ,K:

x̂
(k)
children(γ) ←

⌊
x̃children(γ)

⌋
+ ŷ(k)(7.7)

ŷ(k) = argmin
y

1⊤|Q(k)
(
x̃children(γ) −

(⌊
x̃children(γ)

⌋
+ y

))
|

subject to:

yi ∈ {0, 1} for yi elements of y; and

Ceq
(⌊
x̃children(γ)

⌋
+ y

)
= ceq; and

Cu
(⌊
x̃children(γ)

⌋
+ y

)
≤ cu.[

Ic∗ Ic∗ · · · Ic∗
] (⌊

x̃children(γ)
⌋
+ y

)
= x̂γ

If k > 1 :

Q(j)
(⌊
x̃children(γ)

⌋
+ y

)
= Q(j)x̂

(j)
children(γ) ∀ j ∈ {1, . . . , k − 1}.

We note that the existence of a solution for the multi-pass rounder is not always guaranteed and
depends heavily on the choice of the query groups used in each pass and their ordering. In particular,
to guarantee polynomial time solution of the rounder estimator, the mathematical constraints must
exhibit total unimodularity (TUM), the condition that every square non-singular submatrix is
unimodular (integer and has determinant +1 or -1). TUM does two things. First, if a continuous
solution exists to the non-negative least squares problem problem, then TUM implies than an
integer solution exists to the rounder problem. Second, TUM implies that finding the rounder
solution is tractable. TUM does not, unfortunately, guarantee that the continuous non-negative
least squares problem has a solution in the first place. Because the mathematical constraints in
the rounder estimator are composed of interactions between the invariants, edit constraints, and
hierarchical consistency constraints, ensuring TUM requires limiting invariants and edit constraints
as much as possible.

7.4. Algorithmic improvements: AIAN spine. American Indian and Alaska Native (AIAN)
areas tend to be far off the standard tabulation spine and, therefore, are at risk of poor accuracy for
a given privacy-loss budget. For example, the largest AIAN tribal area is the Navajo nation which
includes subsets of many counties within the states of New Mexico, Arizona and Utah. To improve
the accuracy of the AIAN areas, we define what we call the AIAN spine, which subdivides each
state with any AIAN tribal areas into two geographic entities: the union of the legally defined AIAN
areas within the respective state and the remaining portion of the state.20 Counties, tracts, and
block groups are also subdivided as necessary to be fully nested within either the AIAN branch or
the non-AIAN branch of the state’s hierarchy. Note that AIAN areas, like all tabulation geographic

20The AIAN spine was developed in collaboration with geographers who specialize in the different tribal
area definitions (Abowd, Ashmead, Cumings-Menon, Kifer, et al., 2021). We used all Census AIAN and
native Hawaiian areas except state-designated tribal statistical areas (SDTSAs) and tribal-designated sta-
tistical areas (TDSAs).
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entities, are composed of tabulation blocks; therefore the creation of this spine did not require the
census blocks to be subdivided.

In the 2010 Census geography definitions, there were 36 states with one or more AIAN area
on the spine. That number increased to 37 in 2020. Functionally, these new geographic units
are treated as state equivalents in the TDA. Meaning there are 87 (88 in 2020) state-equivalent
geographies within the US used in TDA.

Creating the AIAN spine created a subtle, but important, modification to the way the least
squares and rounder problems were solved. In states with AIAN areas on the spine, the TDA
hierarchy branches at the state level. This means that at the state level, the AIAN total population
and the non-AIAN total population are solved with privacy-loss budget. Only their sum is invariant.
For states without AIAN areas on the spine total population is invariant and there is no need to
estimate AIAN and non-AIAN components.

7.5. Algorithmic improvements: Optimized spine. Off-spine entities are those geographic
entities that are not directly estimated as part of the TDA spine. Using the standard census
tabulation spine (US, state, county, tract, block group, block), many legally-defined off-spine entities
are far away from the tabulation spine. The relevant distance measure is the minimum number of
on-spine entities added to or subtracted from one another in order to define the off-spine entity,
which we call the off-spine distance. There is an inverse relation between off-spine distance and
count accuracy for off-spine entities. As an entity’s off-spine distance increases, the accuracy of its
estimated characteristics decreases due to the accumulation of independent random noise from the
DP mechanism applied to each of these components. Our approach to optimizing the geographic
spine is discussed in detail in Abowd, Ashmead, Cumings-Menon, Kifer, et al. (2021). In this
section, we give the provide the main details.

In order to improve the accuracy of legally-defined off-spine entities, we designed an algorithm
to re-configure the standard tabulation spine for use within the TDA. This was done in two ways.
First, we created custom block groups, which are re-groupings of the tabulation blocks such that
off-spine entities are closer to the spine and group quarters facilities of each type are isolated from
their surrounding housing-unit only areas. Isolating group quarters in this manner improves the
accuracy of estimated characteristics in both the group quarters and surrounding housing-unit only
blocks. Second, we bypass parent geographies with only a single child, combining the privacy-loss
budget for the child with that of the parent, which avoids wasting privacy-loss budget on redundant
measurements and yields more accurate estimates. The accuracy gain occurs because the algorithm
proceeds in a top-down fashion; hence, in the case of a single child geography all measurements
must exactly equal those of the parent. Additional privacy-loss budget used on the child after the
parental estimation is wasted. This optimization step effectively collapses the parent and child into
a single node when the parent’s fan-out is one and uses the combined privacy-loss budget of the
parent and child to take DP measurements once for this node.

We applied spine optimization after defining the AIAN spine. Hence, the AIAN areas and
the balance of the state were optimized in separate branches of the hierarchy. To implement
spine optimization, the Geography Division provided a list of the major sub-county governmental
entities within each state. For portions of strong Minor Civil Division (MCD) states outside of
AIAN areas, these entities were MCDs. In all other areas, the major sub-county entities were a
combination of incorporated and Census-designated places. As with states, counties and tracts
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using the AIAN spine, these sub-state entities were divided into the part within an AIAN area
and the balance of the sub-state entity. Call these sub-state entities the targeted off-spine entities.
We minimized the off-spine distance for the targeted off-spine entities using a greedy algorithm
that created custom block groups to reduce the number of on-spine entities required to build the
targeted off-spine entities. The custom block groups replaced tabulation block groups within TDA;
however, the official tabulation block groups are used for all reported statistics. That is, custom
block groups are an implementation detail for TDA, not a replacement for tabulation block groups.
The spine optimization algorithm could also have created custom tract groups, but this feature was
not implemented for the redistricting data.

Table 2 shows selected statistics for geographic entities at each level of the heirarchy after applying
the spine optimization to the AIAN spine respectively for 2010 and 2020. The number of entities
for state, county, tract and block group differ from the number of tabulation tabulation geographic
entities because the AIAN spine subdivides geographies with AIAN areas. Effectively, this moves
tabulation counties, tracts and block groups slightly off spine in order to move AIAN areas, MCDs,
and census places closer to the spine.

Table 2. Selected Statistics for Geographic Entity Counts over the Hierarchy
2010 2020

States with AIAN areas on
the Spine (FIPS Codes)*

01, 02, 04, 06, 08, 09, 12,
13, 15, 16, 19, 20, 22, 23,
25, 26, 27, 28, 30, 31, 32,
35, 36, 37, 38, 40, 41, 44,
45, 46, 48, 49, 51, 53, 55,
56

01, 02, 04, 06, 08, 09, 12,
13, 15, 16, 18, 19, 20, 22,
23, 25, 26, 27, 28, 30, 31,
32, 35, 36, 37, 38, 40, 41,
45, 46, 47, 48, 49, 51, 53,
55, 56

Entities State Level 87 88
Entities County Level 3,488 3,496
Entities Tract Level 73,180 84,589
Tabulation Block Groups 217,740 239,780
Custom Block Groups** 402,020 409,548
Tabulation Blocks 11,078,297 8,132,968
Tabulation Blocks with Oc-
cupied GQs

112,956 126,723

Tabulation Blocks with
Housing Units >0

6,379,963 5,879,049

Tabulation Blocks with Po-
tential Positive Population

6,398,202 5,892,698

*Rhode Island has an AIAN area in 2020; however, it is not included in the list of states
with AIAN areas on the spine because there are no housing units or occupied GQs in
this AIAN area. Therefore, the blocks within this AIAN area are not included in the
spine at all because they have a zero probability, a priori, of containing positive resident
population.
**Custom block groups (CBG) used within the TDA differ from tabulation block groups.
These differences improve accuracy for off-spine geographies like places and minor civil
divisions. The use of CBG for measurement and post-processing within TDA does not
impact how the resulting data are tabulated. All 2020 Census data products will be
tabulated using the official tabulation block groups as defined by the Census Bureau’s
Geography Division.
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7.6. Computing and technology requirements of the DAS. The DAS requires a specialized
environment to run given the size and complexity of the data being processed and the computing
requirements of the algorithm. Here we describe some of the specifics of those computing and
technology requirements. In Section 8 we discuss the final production settings used in the TDA for
the redistricting data. The DAS, as implemented for the redistricting data, is written in Python
version 3.7 and uses Gurobi 9.1 for numerical optimization. The system is executed on Amazon
Web Services (AWS) using Elastic Map Reduce (EMR) version 6.2 and Apache Spark version 3.0.1.
The DAS is run on EMR clusters built from AWS r5.24xlarge virtual machines, in which each VM
has 96 cores and 768GiB of RAM. The typical cluster size and spark configuration is: 1 EMR
master node and between 8 and 30 worker (core plus task) nodes, with Spark deployed in client
mode. The mix of Spark executors, memory settings, and cores-per-executor used by TDA varies
based on workload, but for a typical redistricting data run, was often set to 24 cores per executor,
256 GiB driver memory, 64 GiB executor memory, and 128 GiB memory overhead.

The TDA implementation within the DAS consists of two primary parts: an underlying frame-
work and the specialization of the framework for the implementation in 2020 Census.

The DAS framework is a set of 22 Python source files (2,814 lines of code and 1,125 lines of unit
tests) that provides a generic framework for implementing a batch data processing system. The
framework provides for explicit modules that read a configuration file and then use the information
in that file to initialize the remainder of the application, read the input data (the reader), perform
the differential privacy computation (the engine), validate the results of the computation (the
validator), and write out the results (the writer). The actual reader, engine, validator, and writer
are implemented by their own Python classes that are also specified in the configuration file. Each
module can in turn read additional parameters from the configuration file. Thus, the behavior of
the entire system is determined by the configuration file, making it easy to use the framework for
both algorithmic experimentation as well as production by specifying different configuration files.

The TDA for the 2020 Census is written within the DAS Framework. It consists of 461 Python
source files (78,428 lines of program files and 11,513 lines of unit tests). The system includes 10
readers, 20 writers, and multiple engines. Only one reader, writer, and engine are used for any given
run. To document the provenance for each TDA run, the DAS framework automatically determines
from the configuration file the specific Python files required and saves this information in XML and
in Portable Document Format (PDF) in the DAS Certificate. The system also creates an archive
containing the complete source code run. All TDA run data and metadata are archived in the AWS
Simple Storage Service (S3) with vintage tags.

All DP mechanisms implemented in TDA require a source of random numbers. We estimate that
the 2020 Census will require roughly 90TB of random bytes to protect the person and housing unit
tables. We generate random bits in the AWS environment using the Intel RDRAND instruction
mixed with bits from/dev/urandom (Garfinkel & Leclerc, 2020). Because we used an implementa-
tion of the Canonne et al. (2020, 2021) exact sampling approach for the discrete Gaussian mech-
anism, and allocated privacy-loss budgets using rational numbers, our implementation avoids the
vulnerabilities often associated with floating-point random numbers as noted by Mironov (2012).

8. Tuning and Testing the DAS Over Time

8.1. Tuning the DAS and the release of demonstration data products. The 2010 Census
data represent the best source of real data for conducting utility experiments relevant to the 2020
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census without using the 2020 data. Starting in October 2019, the Census Bureau released a series
of demonstration data products based on the 2010 data (U.S. Census Bureau, 2021d). Each set
consisted of privacy-protected microdata files (PPMF) generated from the microdata detail file
(MDF) that supported at least the redistricting data tables. When released, each demonstration
data product represented the current state of DAS development.

It is not possible to tune a formally private disclosure avoidance system by directly using the
confidential data it is designed to protect. Doing so causes the values of the tuning parameters—the
privacy-loss budget allocations and the query strategies—to leak information about the confidential
data. This is the reason that the TDA was not tuned using the 2020 Census Edited File. It is
also the reason why quality assurance of the MDF is a difficult conceptual task. Historically, the
disclosure avoidance methods used for the decennial census were tuned using data from the same
census. Record swaps were rejected if the resulting swapped data did not meet particular accuracy
standards. For historical reasons and because of errors associated with the microdata requirement,
quality assurance for the 2020 DAS MDF does not strictly adhere to the tenets of formal privacy.
The MDF receives human review examining it for errors that look unusual, surprising, or unac-
ceptable compared to the 2020 Census Edited File. Notification of such errors may be escalated
up the organizational hierarchy for review and decision-making. As noted in Section 10, there were
no such errors flagged in the review of the production redistricting data; however, this situation
highlights the need for formally private techniques for quality assurance.

The demonstration data product dated April 28, 2021 was the final pre-production release. This
PPMF consisted of person- and housing unit-level microdata with two global privacy-loss budgets:
ρ = 1.095 (1.05 for persons and 0.045 for housing units) or ϵ = 11.14 and ρ = 0.1885 (0.185 for
persons and 0.0035 for housing units) or ϵ = 4.36.21

Table 3 gives the proportion of the ρ-budget per geographic level for both persons and housing
units in the April 2021 release. For the estimation of the persons tables, the block-level queries
received approximately half of the total privacy-loss budget. For housing units, block-group-level
queries received the predominant share of the privacy-loss budget.

21The October 2019 and May 2020 demonstration data products were based on the full suite of tables
planned for the redistricting, demographic and housing characteristics data. They were implemented using
versions of TDA based on the discrete geometric mechanism with pure DP (δ = 0). In these releases,
the global privacy-loss budget was determined using ϵ-allocation—4 for persons, 2 for housing units—
which sums to a total of 6. The September 2020, November 2020, April 2021, and production versions
of TDA were implemented using versions of TDA based on the discrete Gaussian mechanism. For these
releases, including the production release, privacy-loss budget was determined using ρ-allocation in the
zCDP framework. When ρ allocations are re-expressed in terms of ϵ, the conversion uses the numerical
approximation discussed in Section 6 evaluated a δ = 10−10. In public summaries, we added ϵ for persons
and housing units to facilitate comparisons to earlier releases. When using zCDP, a more accurate conversion
of the global privacy-loss budget to (ϵ, δ) form can be obtained by summing the ρ-allocation of persons and
housing units, then converting to ϵ at δ = 10−10. For the earlier releases, global privacy-loss budgets were
ρ = 0.1885 (November 2020), ρ = 0.1885 (September 2020), ϵ = 6 (May 2020), and ϵ = 6 (October 2019).
As noted in Section 6, zCDP is summarized by the value of ρ, which represents a continuum of (ϵ, δ) pairs.
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Table 3. Per Geographic Level ρ Allocation Proportions for Persons and Housing Units,
April 2021 Release

Geographic Level Person ρ Proportions Housing Units ρ Proportions
US 51/1024 1/1024
State 153/1024 1/1024
County 78/1024 18/1024
Tract 51/1024 75/1024
Custom Block Group* 172/1024 906/1024
Block 519/1024 23/1024
*The custom block groups used within TDA differ from tabulation block groups.

Tables 4 and 5 show the proportions of the total ρ-budget allocations per query within each
geographic level for the persons and households tables respectively. These should be interpreted
in conjunction with Table 3 in order to calculate the proportion of the total budget which a level-
specific query represents. For example, the County TOTAL query represents 342/1024× 78/1024,
or approximately 2.5% of the total privacy-loss budget for persons.22

The set of queries and the values used per geographic level and per query were determined by a
set of internal experiments that took place over a period of approximately five months, beginning in
December 2020 and ending in early April 2021. These internal experiments estimated the minimum
global privacy-loss budget and its allocation to specific queries in order to ensure fitness-for-use
in the redistricting application. See Wright and Irimata (2021) for details. These allocations
were reflected in the April 2021 demonstration data product. Subsequent analysis by internal and
external stakeholders addressed accuracy criteria for other, primarily demographic, uses. These
allocations are reflected in the final production settings.

The initial, systematic tuning phase specified a quantitative metric targeted at the redistrict-
ing use case: for at least 95% of geographic units, the largest of a selected set of CENRACE ×
HISPANIC populations, corresponding to the major race and ethnicity groups in Statistical Policy
Directive 15, should not change by more than ±5 percentage points when expressed as a percent-
age of the geographic unit’s total population compared to its enumerated percentage of the total
population in that geographic unit. Due to computational constraints of creating many indepen-
dent samples, geographic variability was used for evaluating the 95% criterion. While not a direct
substitute for evaluating variability across many runs, we have observed that these metrics are very
consistent from run to run, making them useful in their own right.

The TDA has error distributions that are data-dependent in a fashion that cannot be expressed
in closed form and depends on confidential data values that cannot be published. Therefore, we
performed the fitting to the redistricting use-case iteratively rather than using the ex ante properties
of zCDP. We used six candidate query strategies (queries for which formally private measurements
are taken), created by defining two dimensions. First, query strategies varied by either using
measurements that closely conformed to those in the publication specifications for the redistricting
data product, or by collapsing/excluding certain marginal queries to try to take advantage of
dependence among queries. Second, because both formal privacy and certain measures of error in
TDA’s estimation are especially sensitive to cells with small counts, we assigned budgets to queries

22In this section, the use of query names in all capitals, like TOTAL, refers to the definitions in Tables
4 and 5. DETAILED means HHGQ × VOTINGAGE × HISPANIC × CENRACE.
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in one of three ways: proportional to the square of query cardinality, inversely proportional to the
square of query cardinality, or uniformly assigned. Crossing these two dimensions generated six
candidate strategies. Optimization passes were ordered heuristically, with queries assigned large
relative budgets typically isolated in their own passes. In the strategies with almost all privacy-
loss budget assigned to the DETAILED query (proportional to the square of query cardinality), in
particular, queries were optimized simultaneously, in a single pass.

Strategies that assigned weight according to the inverse-square of query cardinality were quickly
ruled out as noncompetitive. For the remaining four strategies, we iterated experimentally, geo-
graphic level by geographic level starting at the top with the US. First, using binary search, for each
geographic level, we identified the approximate assignment of ρ to that geographic level’s queries
needed to satisfy the redistricting criterion, when the other geographic levels were assigned infinite
budget. We then proceeded to account for dependence between geographic levels. We set US and
state to their single-level fitted ρ values, and assigned the remaining levels infinite budget. We
then increased the US and state ρ budgets proportionally until the criterion was satisfied. Next,
we set the county budget to its single-level fitted ρ, and further increased US, state, and county
budgets proportionally until the criterion was satisfied. We proceeded down the hierarchy until
all geographic levels had been assigned a ρ value. This procedure led to the initial identification
of a total ρ of 1.095 as satisfying the redistricting criterion. While it may not be obvious from
this description, because the redistricting criterion requires statistics for off-spine entities, every
experimental run of TDA processed data down to the block level. This is the reason tuning took
several months to accomplish.

The April 2021 demonstration data product used the L2 and L1 multi-pass components. Specif-
ically, at the US level, we used a single pass for both the L2 and L1 phases with all the queries in
Table 4 used for both phases. The state, county, tract, and block group geographic levels used two
passes each. For both the L2 and L1 phases, the first pass consisted of the TOTAL query used both
as the noisy estimate and constraint. The second pass consisted of the remaining queries in Table
4 for both phases. Finally, at the block level, a single pass was used for both phases with all the
queries from Table 4 for both phases. The choice of the number of passes and the specific queries
used in each pass were tested as part of the redistricting experiments, though we do not show any
comparisons here with alternatives.
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Table 4. Per Query ρ Allocation Proportions by Geographic Level for Persons, April 2021
Release

Query Per Query ρ Allocation Proportions by Geographic Level
US State County Tract CBG* Block

TOTAL (1 cell) 678/1024** 342/1024 1/1024 572/1024 1/1024
CENRACE (63 cells) 2/1024 1/1024 1/1024 2/1024 1/1024 2/1024
HISPANIC (2 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
VOTINGAGE (2 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HHINSTLEVELS (3 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HHGQ (8 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HISPANIC×CENRACE
(126 cells)

5/1024 2/1024 3/1024 5/1024 3/1024 5/1024

VOTINGAGE×CENRACE
(126 cells)

5/1024 2/1024 3/1024 5/1024 3/1024 5/1024

VOTINGAGE×HISPANIC
(4 cells)

1/1024 1/1024 1/1024 1/1024 1/1024 1/1024

VOTINGAGE×HISPANIC
×CENRACE (252 cells)

17/1024 6/1024 11/1024 17/1024 8/1024 17/1024

HHGQ×VOTINGAGE
×HISPANIC ×CENRACE
(2,016 cells)

990/1024 330/1024 659/1024 989/1024 432/1024 989/1024

*Custom block groups (CBG) differ from tabulation block groups and are only used by the TDA.
**The TOTAL query (total population) is held invariant at the state level. This ρ allocation assigned
to TOTAL at the state level is the amount assigned to the state-level queries for the total population
of all AIAN tribal areas within the state and for the total population of the remainder of the state, for
the 36 states that include AIAN tribal areas.

Table 5. Per Query ρ Allocation Proportions by Geographic Level for Housing Units, April
2021 Release

Query Per Query ρ Allocation Proportions by Geographic Level
US State County Tract CBG* Block

Occupancy Status (2 cells) 1 1 1 1 1 1
*Custom block groups (CBG) differ from tabulation block groups and are only used by the TDA.

8.2. Redistricting data production settings. For production run of the 2020 Census Redis-
tricting Data (P.L. 94-171) Summary File, a total privacy-loss budget of ρ = 2.63 was used with
ρ = 2.56 used for person tables and ρ = 0.07 for housing-units tables, considerable increases from
the larger of the April 2021 settings. Production settings of the geographic-level ρ proportions are
given in Table 6 and the query ρ proportions by geographic level are given in Tables 7 and 8 for
persons and housing units, respectively. Note, in particular, the shift in the ρ allocation for the
person-level data away from the block level and onto the custom block group and tract level. This
shift allowed the location confidentiality protection of respondents, which is primarily controlled
by the allocation to the block level, to improve while meeting even tighter accuracy targets for
HISPANIC × CENRACE at the tract and block-group level. This reallocation relied upon the effi-
ciency gain from the spine optimization. The production settings used the same estimation strategy
(L2 and L1 multi-pass components) and multi-pass orderings as the April 2021 release.
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Table 6. Per Geographic Level ρ Allocation Proportions for Persons and Housing Units,
Production Settings

Geographic Level Person ρ Proportions Housing Units ρ Proportions
US 104/4099 1/205
State 1440/4099 1/205
County 447/4099 7/82
Tract 687/4099 364/1025
Custom Block Group* 1256/4099 1759/4100
Block 165/4099 99/820
*Custom block groups differ from tabulation block groups and are only used by the TDA.

Table 7. Per Query ρ Allocation Proportions by Geographic Level for Persons, Production
Settings

Query Per Query ρ Allocation Proportions by Geographic Level
US State County Tract CBG* Block

TOTAL (1 cell) 3773/4097 3126/4097 1567/4102 1705/4099 5/4097
CENRACE (63 cells) 52/4097 6/4097 10/4097 4/2051 3/4099 9/4097
HISPANIC (2 cells) 26/4097 6/4097 10/4097 5/4102 3/4099 5/4097
VOTINGAGE (2 cells) 26/4097 6/4097 10/4097 5/4102 3/4099 5/4097
HHINSTLEVELS (3 cells) 26/4097 6/4097 10/4097 5/4102 3/4099 5/4097
HHGQ (8 cells) 26/4097 6/4097 10/4097 5/4102 3/4099 5/4097
HISPANIC×CENRACE
(126 cells)

130/4097 12/4097 28/4097 1933/4102 1055/4099 21/4097

VOTINGAGE×CENRACE
(126 cells)

130/4097 12/4097 28/4097 10/2051 9/4099 21/4097

VOTINGAGE×HISPANIC
(4 cells)

26/4097 6/4097 10/4097 5/4102 3/4099 5/4097

VOTINGAGE×HISPANIC
×CENRACE (252 cells)

26/241 2/241 101/4097 67/4102 24/4099 71/4097

HHGQ×VOTINGAGE
×HISPANIC×CENRACE
(2,016 cells)

189/241 230/4097 754/4097 241/2051 1288/4099 3945/4097

*Custom block groups (CBG) differ from tabulation block groups and are only used by the TDA.

Table 8. Per Query ρ Allocation Proportions by Geographic Level for Housing Units,
Production Settings

Query Per Query ρ Allocation Proportions by Geographic Level
US State County Tract CBG* Block

Occupancy Status (2 cells) 1 1 1 1 1 1
*Custom block groups (CBG) differ from tabulation block groups and are only used by the TDA.

8.3. Accuracy comparisons over time. There are hundreds, if not thousands, of possible accu-
racy metrics that could be shown in order to assess the utility of the TDA for the redistricting and
general demographic use cases. Here, we show just a few. The complete set of detailed statistical
metrics for the redistricting use case can be found in Wright and Irimata (2021). We summarize
here. First, for Census-designated places and target off-spine entities, including off-spine entities in
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both the AIAN and non-AIAN branches of the hierarchy, the production settings of TDA achieve
the ±5 percentage point target at least 95% of the time in the population interval 200 to 249 (far
below the original target of 500). For block groups the target is achieved in the interval 450 to
499 (again below the original target of 500). At the production settings, the redistricting data can
be used reliably for Congressional, state legislative districts, and every one of the 73 redistricting
use cases that the Department of Justice (DoJ) Voting Section supplied—a sample that included
many low population legislative areas. Reliability means the difference between the ratio of the
largest demographic group population to the total population of an area based on the TDA and
the corresponding ratio of the largest demographic group population to the total population of the
area based on the official 2010 Census Redistricting Data (P.L. 94-171) Summary File is less than
or equal to 5 percentage points at least 95% of the time. Furthermore, for specific redistricting
plans, majority-minority districts near the 50% threshold differ by only a handful of persons and
are as likely to flip over as under 50%. The Voting Rights Act Section 2 analysis for the vast
majority of Congressional, state legislative, and DoJ-provided plans is unchanged compared to the
results obtained from the official 2010 Census Redistricting Data (P.L. 94-171) Summary File. The
complete detailed metrics for general demographic uses cases for all demonstration versions of the
DAS and for the production settings run on the 2010 Census data can be found at U.S. Census
Bureau (2021d).

Figures 2 through 5 are good representations of the improvement in the TDA over time including
those found in the tuned April 2021 release and the final production settings. The figures illus-
trate four different accuracy metrics; however, it is important to remember, that the statistical
optimization problems in Section 7 focus on L1 and L2 count accuracy. Mean absolute error is the
L1 error in the indicated statistic for the indicated geography averaged for that statistic over all
geographic units in the figure’s universe. We note that in the figures, mean errors are calculated
over geographic units (e.g., counties in Figure 2) for a single realization of the TDA. The improve-
ments in accuracy over time in these figures were due to improvements within the algorithm, tuning
strategies, and increases of the privacy-loss budget. In comparing the different versions of TDA in a
single figure, the November 2020 and April 2021 (ρ = 0.1885) represent algorithmic improvements
for the redistricting data using the same total privacy-loss budget. The April 2021 (ρ = 0.1885)

compared to April 2021 (ρ = 1.095) show the effects of increasing the privacy-loss budget for the
same algorithms and budget allocations. It is also apparent from comparing the graphs that every
query does not improve as the experiments progressed. For example, the mean absolute error of
the total population in all incorporated places increased between the November 2020 and April
2021 runs at ρ = 0.1885 (see Figure 4) but returned to its November 2020 value at the increased
privacy-loss budget of ρ = 1.095. Such movements happened because algorithmic improvement
targeted many metrics allocating a fixed privacy-loss budget causing tradeoffs whereas increasing
the privacy-loss budget using the same algorithms increased accuracy across many different metrics.
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Figure 2. Mean Absolute Error of the County Total Population among the Least Populous
Counties (Population Under 1,000) by Demonstration Data Product Vintage

Figure 3. Mean Absolute Error of the Total Population for Federal American Indian
Reservation/Off-Reservation Trust Lands by Demonstration Data Product Vintage
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Figure 4. Mean Absolute Error of the Total Population among All Incorporated Places by
Demonstration Data Product Vintage

Figure 5. Mean Absolute Error of the Total Population among Tracts for Hispanic x Race
Alone Populations by Demonstration Data Product Vintage

9. Utility Experiments

To further study the effect of certain design choices on the utility of the results, we conducted
an additional series of experiments after the data release using the 2010 redistricting data. We
considered the final production settings (see section 8.2 for full details) as a baseline and completed
experimental runs to study the marginal effects of 1) randomness 2) increasing ρ, and 3) the multi-
pass least squares estimator. These experiments consisted of a total of 4 independent runs of the
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TDA with 3 different settings. In each case, only the person-level data were used (and not housing
units). The first two runs used the same production settings (ρ = 2.56), and we refer to these runs as
baseline1 and baseline2. Baseline1 is the output from the June 8, 2021 PPMF exactly as published
whereas baseline2 uses fresh randomness but is otherwise identical. The third run increased the
value of ρ by 10% to ρ = 2.81. We refer to this run as inc_rho. The fourth run removed the L2

multi-pass component used at the state, county, tract, and block-group levels, instead using a single
L2 pass. We refer to this run as l2_onepass.

Tables 9 and 10 show the absolute error across selected queries averaged across the geographic
level of interest. The absolute error for a given query can be represented

∑m
i=1 |θ̂i − θi| where

i = 1, . . . ,m are the levels in the query23 with θ̂i and θi representing the TDA estimate and the
CEF value respectively. In Table 9 we first observe that there is no error in the TOTAL query at
the US and state levels for any of the runs. This is because those values are held invariant. In
general, the average error tends to decrease when moving from the US geographic level to the block
level, especially for queries with many levels. This effect is largely due to the increasing sparsity of
those queries at the lower levels of geography.

When comparing the different runs in Tables 9 and 10, we see that the average errors for baseline1
and baseline2 are very consistent with each other, especially at the lower levels of geography where
we are averaging over a large number of geographic units. While ideally, average errors could be
established by averaging over many runs of the TDA, a single run is extremely computationally
expensive. These results show that in evaluating this type of average errors, it is not necessary to
look across many runs. We note however, that errors averaged across geographies should not be
used as a direct substitute for the run-to-run variability in an individual geography’s query error.
This is because the underlying error distributions are not necessarily identical across geographic
units. We are actively researching better methods for summarizing the error distributions for the
published TDA statistics.

The effect of increasing the overall ρ value by ten percent on the metrics in Tables 9 and 10 is
noticeable, but small (roughly a 3% reduction in error). We see that using multiple passes instead
of one pass consistently improved the errors across many queries.

23e.g., 1 level for TOTAL, 2 levels for VOTINGAGE, 63 for CENRACE, and 2016 for DETAILED
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Table 9. Absolute Error in Total, Voting-age, and Hispanic Queries Averaged Across
Geographic Units by Geographic Level

Geographic Level Query baseline1 baseline2 inc_rho l2_onepass
US TOTAL 0.00 0.00 0.00 0.00
State TOTAL 0.00 0.00 0.00 0.00
County TOTAL 1.75 1.75 1.71 1.73
Tract TOTAL 1.94 1.93 1.84 1.88
Block Group TOTAL 16.00 16.01 15.42 15.99
Block TOTAL 4.85 4.85 4.69 4.85
US VOTINGAGE 70.00 92.00 64.00 112.00
State VOTINGAGE 29.69 25.57 24.08 27.14
County VOTINGAGE 19.67 19.82 19.04 19.62
Tract VOTINGAGE 15.00 15.10 14.47 15.10
Block Group VOTINGAGE 21.35 21.40 20.57 21.34
Block VOTINGAGE 6.23 6.23 6.01 6.23
US HISPANIC 28.00 24.00 18.00 14.00
State HISPANIC 24.24 28.00 27.25 27.02
County HISPANIC 20.29 20.81 19.48 20.13
Tract HISPANIC 8.11 8.12 7.81 8.06
Block Group HISPANIC 20.24 20.27 19.56 20.21
Block HISPANIC 5.82 5.82 5.63 5.82

Table 10. Absolute Error in Queries Averaged Across Geographic Units by Geographic
Level
Geographic Level Query baseline1 baseline2 inc_rho l2_onepass
US CENRACE 698.00 842.00 666.00 666.00
State CENRACE 393.45 392.55 384.75 399.76
County CENRACE 126.42 126.45 122.00 127.25
Tract CENRACE 35.04 35.02 33.83 35.04
Block Group CENRACE 41.36 41.39 40.17 41.39
Block CENRACE 8.04 8.05 7.80 8.04
US HISPANICxCENRACE 882.00 1054.00 930.00 890.00
State HISPANICxCENRACE 562.00 558.31 552.75 563.53
County HISPANICxCENRACE 164.59 164.69 159.38 165.03
Tract HISPANICxCENRACE 43.64 43.65 42.15 43.67
Block Group HISPANICxCENRACE 49.48 49.50 48.03 49.45
Block HISPANICxCENRACE 8.94 8.94 8.67 8.94
US DETAILED* 4456.00 4332.00 4176.00 4212.00
State DETAILED 1568.27 1573.18 1507.14 1572.35
County DETAILED 294.45 293.71 284.47 294.50
Tract DETAILED 95.33 95.29 91.96 95.29
Block Group DETAILED 70.18 70.18 68.03 70.14
Block DETAILED 10.93 10.93 10.59 10.93

*DETAILED is shorthand for HHGQ×VOTINGAGE×HISPANIC×CENRACE

Table 11 shows the error distribution of the TOTAL query for each of the experimental runs at
the county level grouping by the underlying CEF total population. The table shows both the mean
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absolute error as well as specific signed error quantiles for each of the runs and total population
groupings. In general at the county level, there is a small increase in the average error as the total
population increases. The error distributions are fairly symmetric and centered around zero for all
but the largest of counties. In those counties there appears to be slightly larger likelihood of having
a negative error; however, the errors are quite small relative to the overall population of the county.
Comparing the different runs, there is not much variability in these metrics between our baseline
runs or between the baseline runs and inc_rho or l2_onepass.

Considering comparable metrics at the block level (Table 12), we see that overall, the differences
between the error distributions by total population are more pronounced. Blocks with small pop-
ulations are on average slightly overestimated while blocks with larger populations are on average
slightly underestimated by the TDA. This is directly tied to the non-negative query requirement
and much more pronounced at the block level because there are many blocks with very small total
populations. Comparing the different runs, we see that inc_rho had consistently lower errors than
the others at this geographic level.
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Table 11. Error Distribution in Total Population Query Across Counties by CEF popula-
tion

Total Population Count Metric baseline1 baseline2 inc_rho l2_onepass

0 to 1,000 35

mean L1 1.314 0.943 1.314 1.343
q(0.005) -3 -2 -3 -3
q(0.025) -3 -2 -3 -3
q(0.25) -1 -1 -1 0
q(0.5) 0 0 1 0
q(0.75) 1 1 1 2
q(0.975) 3 3 3 4
q(0.995) 3 3 3 4

1,001 to 9,999 663

mean L1 1.611 1.528 1.596 1.558
q(0.005) -5 -5 -6 -5
q(0.025) -4 -4 -4 -4
q(0.25) -1 -1 -1 -1
q(0.5) 0 0 0 0
q(0.75) 1 1 1 2
q(0.975) 4 5 4 4
q(0.995) 6 6 5 6

10k to 99,999 1867

mean L1 1.77 1.819 1.736 1.774
q(0.005) -6 -6 -6 -6
q(0.025) -4 -4 -4 -4
q(0.25) -1 -2 -2 -2
q(0.5) 0 0 0 0
q(0.75) 2 2 1 2
q(0.975) 5 5 4 4
q(0.995) 6 6 6 6

100k to 999,999 539

mean L1 1.883 1.818 1.753 1.761
q(0.005) -8 -7 -6 -6
q(0.025) -5 -5 -4 -5
q(0.25) -2 -2 -2 -2
q(0.5) 0 0 0 0
q(0.75) 1 1 1 1
q(0.975) 4 5 4 4
q(0.995) 5 6 5 5

1,000k+ 39

mean L1 2.026 1.923 2.256 2.333
q(0.005) -9 -10 -7 -9
q(0.025) -9 -10 -7 -9
q(0.25) -3 -2 -2 -3
q(0.5) -1 -1 0 -2
q(0.75) 0 1 1 0
q(0.975) 4 4 7 4
q(0.995) 4 4 7 4

Note that q(x) represents the xth quartile.
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Table 12. Error Distribution in Total Population Query Across Blocks by CEF population
Total Population Count metric baseline1 baseline2 inc_rho l2_onepass

0 191,175

l1_mean 2.746 2.745 2.672 2.75
q(0.005) 0 0 0 0
q(0.025) 0 0 0 0
q(0.25) 0 0 0 0
q(0.5) 2 2 2 2
q(0.75) 4 4 4 4
q(0.975) 11 11 11 11
q(0.995) 17 17 16 17

1 to 9 1,823,665

l1_mean 3.332 3.333 3.224 3.332
q(0.005) -7 -7 -7 -7
q(0.025) -5 -5 -5 -5
q(0.25) -1 -1 -1 -1
q(0.5) 1 1 1 1
q(0.75) 4 4 4 4
q(0.975) 12 12 11 12
q(0.995) 17 17 17 17

10 to 99 3,666,266

l1_mean 4.824 4.828 4.655 4.825
q(0.005) -17 -17 -17 -17
q(0.025) -12 -12 -12 -12
q(0.25) -4 -4 -4 -4
q(0.5) 0 0 0 0
q(0.75) 4 4 4 4
q(0.975) 13 13 13 13
q(0.995) 19 19 19 19

100 to 999 707,291

l1_mean 9.153 9.158 8.851 9.177
q(0.005) -43 -43 -42 -43
q(0.025) -30 -30 -29 -31
q(0.25) -12 -12 -12 -12
q(0.5) -5 -5 -5 -5
q(0.75) 1 1 1 1
q(0.975) 13 13 12 13
q(0.995) 20 20 19 20

1,000+ 9,805

l1_mean 27.124 27.28 26.436 27.378
q(0.005) -88 -89 -83 -88
q(0.025) -71 -71 -69 -72
q(0.25) -41 -41 -40 -41
q(0.5) -26 -26 -25 -26
q(0.75) -8 -8 -8 -8
q(0.975) 7 8 7 7
q(0.995) 18 19 17 18

Note that q(x) represents the xth quartile.

Table 13 shows the signed error in the total population query after grouping geographies into
quintiles by their the Blau index (Blau, 1977) for each of the five TDA runs. The Blau index is a
measure of group heterogeneity and was calculated per geography over eight race-ethnicity levels:
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Hispanic, non-Hispanic White alone, non-Hispanic Black or African American alone, non-Hispanic
American Indian and Alaska Native alone, non-Hispanic Asian alone, non-Hispanic Native Hawaiian
and Other Pacific Islander alone, non-Hispanic Some Other Race alone, and non-Hispanic Two or
More Races. A larger Blau index indicates more heterogeneity. The Blau index quintile groupings
are based on the 2010 CEF. The errors by Blau index quintile were one of the main motivations for
developing the multi-pass estimators. Notice the improvement in the two baseline metrics compared
with l2_onepass at the county, tract, and block group. The first pass in the multi-pass estimator,
as used in the production setting, locks in the total population estimate and is less prone to the side
effects of enforcing non-negativity. The small error values associated with the increase privacy-loss
budget can also be seen in this table, though the effect appears to be small around the production
value of ρ.

Table 13. Signed Count Error in Population Total Query Averaged Across Geographic
Units by Geographic Level and Blau Index Quintile

Geographic Level Quintile baseline1 baseline2 inc_rho l2_onepass

County

1 0.17 0.14 0.14 0.39
2 0.01 0.06 -0.09 0.04
3 0.01 -0.01 -0.13 -0.04
4 -0.04 -0.04 0.11 -0.11
5 -0.14 -0.15 -0.03 -0.28

Tract

1 0.07 0.07 0.11 0.34
2 0.03 0.03 0.02 0.08
3 -0.02 -0.02 -0.01 -0.02
4 -0.05 -0.04 -0.07 -0.13
5 -0.04 -0.04 -0.05 -0.26

Block Group

1 1.69 1.70 1.66 1.81
2 1.55 1.55 1.53 1.65
3 0.69 0.69 0.62 0.67
4 -0.90 -0.90 -0.77 -0.89
5 -2.91 -2.91 -2.92 -3.10

Block

1 and 2 1.55 1.55 1.50 1.55
3 -0.22 -0.22 -0.21 -0.21
4 -1.07 -1.07 -1.05 -1.07
5 -1.67 -1.67 -1.62 -1.67

The utility comparisons in this section have focused on mean absolute error and the distribution
of signed errors in the DAS. These comparisons permit assessment of the factors contributing to
uncertainty in the published data caused by the disclosure avoidance by comparison to the 2010
Census publications. We now compare the uncertainty in the production settings of the DAS with
other sources of uncertainty in the 2010 Census using U.S. Census Bureau (2022) and Bell and
Schafer (2022), which are the sources for statistics below.

At the block level the mean absolute error in the total population is 4.8 persons and 90% of the
blocks with housing units or GQ population have errors between -11 and 10. The most populous
blocks have asymmetric errors in total population. For example, in blocks with total population
above 3,250, the mean absolute error is 22.3 persons and 90% of the blocks have errors between -80
and 3. The simulation studies exclude the group quarters population for technical reasons, but they
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still provide interesting comparisons. The first simulation (Schafer) measures “natural variability in
population counts over repeated realizations of the census.” That is, the simulation holds the “true
population,” which is latent, constant at the observed 2010 enumeration and simulates repeated
censuses with operational and coverage error rates observed in 2010. In this simulation block
level population in 2010 has mean absolute error of 1.5 persons and 90% of the blocks have errors
between -4 and 4. For blocks with populations of 1,000 or more, the mean absolute error is 14
persons and 90% of the blocks have errors between -31 and 30. The second simulation (Bell)
measures variation in the “coverage error,” the difference between the dual system estimate (DSE)
of the true population and the 2010 Census enumerated population using models for the components
of the DSE. The mean absolute error in the block population from this simulation is 5.4 persons
and 90% of the blocks have errors between -11 and 12. At the block level, the DAS contributes
uncertainty to population counts that appears to be comparable to the uncertainty contributed by
census operational, measurement and coverage errors.

The picture is very different for more aggregated geographies. For all counties, the mean absolute
error in the DAS is 1.75 and 90% of counties have errors between -4 and 4. In the Schafer simulation,
the mean absolute error in the county population is 117 and 90% of counties have errors between
-248 and 230. In the Bell simulation, the mean absolute county population error is 964 and 90%
of counties have errors between -1,841 and 2,048. The uncertainty in county populations from the
DAS is trivial compared to the estimated uncertainty contributed by operational, measurement and
coverage errors. The explanation for this result is straightforward. The DAS was designed to control
the error from disclosure limitation at all levels of geography, whereas operational, measurement
and coverage errors largely accumulate as the population in the geographic area increases. For
this reason, block-level uncertainty caused by the DAS can provide confidentiality protection of the
respondent’s location without contributing materially to the uncertainty in populations of larger
geographic units like MCDs, towns, cities, American Indian Reservations, and counties.

10. Conclusion

The development of the TopDown Algorithm as the core disclosure avoidance technology for
the publications from the 2020 Census began in 2016. Initial work focused on implementing pure
differential privacy using the Laplace mechanism. This preliminary work culminated in the release,
in April 2019, of the Redistricting Data (P.L. 94-171) Summary File from the 2018 End-to-End
Census Test. The initial implementation demonstrated feasibility. Since the use case for the End-
to-End Test data product was limited to the correctness of the dissemination format and dictionary,
this initial release received little public scrutiny.

Beginning with the October 2019 release of the first DAS demonstration data product, the Har-
vard Data Science Review Symposium that same month, and the Committee on National Statistics
(CNSTAT) expert workshop in December 2019, there was intensive internal and public scrutiny
of the 2020 Census DAS and TDA. The dialogue continued through the May 2020 demonstration
data product release, which was prepared just as the Census Bureau announced the suspension of
2020 Census operations due to the COVID-19 pandemic. As the operations of the 2020 Census
resumed in July 2020, many adjustments of the operational and publication timetables occurred.
The development of the DAS and the refinement of TDA were limited to the Redistricting Data
Summary File in an effort to accelerate the production of those data in light of the collection delays
that the pandemic caused. The September 2020, November 2020, and April 2021 demonstration
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data products were limited to the tables in the redistricting data. These products documented the
successive refinements of TDA.

During the one-month public comment period following the April 2021 demonstration data re-
lease, the Census Bureau received 48 detailed comments as well as extensive recommendations from
the Census Scientific Advisory Committee and the National Advisory Committee. Those recom-
mendation along with the recommendations from all internal stakeholders within the Census Bureau
guided the deliberations of the Data Stewardship Executive Policy Committee. DSEP met for a
total of 4.5 hours from June 3 through June 8 to assess the privacy guarantees and accuracy of the
TDA as applied to the 2010 Census Edited File. DSEP’s instructions were incorporated into the
final production parameters for the 2020 Census implementation.

On June 25, 2021, the production DAS, implementing TDA as DSEP instructed, started. On
June 26, the 2020 Microdata Detail File for the redistricting data was released to the Demographic
Programs Directorate for quality assessment. On July 17, the MDF passed the full data quality
assessment and was delivered to the 2020 Census tabulation system for publication. On August
12, 2021 the Census Bureau released the 2020 Census Redistricting Data (P.L. 94-171) Summary
File (U.S. Census Bureau, 2021a) and the final redistricting data demonstration product based on
the same production code and parameters but using the 2010 Census data (U.S. Census Bureau,
2021d). In September 2021, the full production code base for the redistricting data was also released
including all parameter values and supporting tables (U.S. Census Bureau, 2021b).

Further data products, especially the Demographic and Housing Characteristics File, must now
be processed through the DAS. Tuning is already underway for DHC. The Census Bureau expects
to announce the schedule for DHC demonstration products and official publication in early 2022.

Appendix A. The Block-by-block Algorithm

A simple and straightforward method of creating a differentially private estimate of x is to work
directly with the leaves of the geographic spine (a directed, rooted tree), which are the census
blocks. We call this method the Block-by-block Algorithm. Table 14 presents a schematic diagram
of this algorithm.

The first phase of the block-by-block algorithm is to take differentially private measurements of
key queries for each block using the block-level contingency table vectors. The second phase is to, for
each block, combine the information from the differentially private measurements to generate a non-
negative integer estimate of each block’s contingency table vector. While there are many estimators
for this second phase, one method that we deployed to give non-negative integer solutions involves
first finding a non-negative least squares solution and then using a controlled rounding method to
produce the integer solutions for each block-level statistic.

The block-by-block algorithm’s estimates of the contingency table vector at higher geographic
levels are the aggregates of the block-level contingency table vector estimates. This method can be
used in parallel across the millions of blocks and, since blocks are disjoint, the entire ρ value can be
applied to each block’s measurements.24 For example, if we take a set of ρ = 1 zCDP measurements
for each block, the total ρ budget would still be 1.

24We make an appropriate sensitivity adjustment because we assumed that the total number of records
in the database is fixed.
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Table 14. The Block-by-block Algorithm Summary
Measurement Phase
(1) Using the total ρ budget, take differentially private noisy measurements M̃γ

for each node γ at the block level.
Estimation Phase
(1) For each block node γ, estimate the contingency table vector xγ by

(a) Estimating a non-negative solution x̃γ from differentially private
noisy measurements M̃γ and constraints;
(b) Estimating a non-negative integer solution x̂γ from x̃γ by controlled rounding.

The block-by-block algorithm has two major limitations. First, it is difficult to control the
accuracy of estimated queries above the block level. This is because aggregate geography estimates
are simply sums of the the block-level estimates. The differentially private random error of the
block-level measurements are independent of one another. Therefore, the squared error of the
aggregated estimates is at least as large as the summation of the block-level variances for all the
blocks used in a particular aggregation.25 For example, if it was important to finely tune the
accuracy of the nationwide race-ethnicity totals, this could not be done directly. It would only
be possible through adjusting the accuracy of the block-level race-ethnicity totals, which would
require extremely tight block-level estimates since 5,892,698 blocks can be inhabited in the 2020
Census (see Table 2). The second limitation of the block-by-block algorithm is the inability to
enforce constraints at higher levels of geography without also enforcing them at the block level (and
intermediary levels). For example, imagine that the state-level total populations were designated
as invariant (but not sub-geographies). The way the block-by-block algorithm would enforce those
constraints would also imply that the total populations at the block, block group, tract, and county
levels must also be invariant.

A.1. Block-by-block versus TDA comparison. Consider a simple illustrative example of the
block-by-block mechanism and how it compares to the TDA in terms of utility. Suppose that the
only attribute is total population from the block level to the national level. Suppose also, for the
sake of this example, that there are no invariants and negative estimates are permitted. Using a total
ρ-budget of 1

2 , we could use the continuous Gaussian mechanism in the block-by-block algorithm
to generate measurements of the block-level total populations with variance σ2 = 1 for each of the
5, 892, 698 blocks for the 2020 Census. This would produce extremely accurate differentially private
data at the block level, but what are the implications for aggregations of blocks?

Block groups, tracts, counties, states, and the US are all aggregations of blocks. Since the
differentially private measurements add independent noise to each block population, the variance
of estimates of the aggregates is the sum of the block-level variances. For the US, the estimated
total population is unbiased, but, in this most extreme case, the variance of the estimated total
population is 5, 892, 698. Clearly, this is an unacceptably large mean squared error. Now consider
the comparable TDA-inspired approach. Dividing the ρ-budget of 1

2 into six equal parts of 1
12 each

for the US, state, county, tract, block group, and block levels and taking a differentially private
measurement of the total population. Again, all the estimated populations are unbiased; however,
allocating ρ across all levels of the hierarchy results in a variance of σ2 = 6 for each measurements.

25Nonnegativity constraints further introduce bias. This is particularly important when summing over
block-level estimates because they have the sparsest histograms.
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Compared with the block-by-block variance for the total population at the national level, there is
a huge mean squared error improvement. At lower geographic levels except for blocks and block
groups with fewer than six blocks, the measurements generated from the TDA-inspired approach
will also be more precise than block-by-block even without borrowing strength between estimates
at different levels of the hierarchy. Early experimental implementations of TDA using public 1940
Census data have shown that TDA produced more accurate estimates even at the lowest-geographic
level (enumeration district) than the block-by-block algorithm (Abowd, 2018a).

Appendix B. The TDA Satisfies (ϵ, δ) Approximate Differential Privacy

As discussed in Section 2.1, a mechanism that is ρ-zCDP also satisfies (ϵ, δ)–approximate dif-
ferential privacy. When converting ρ to (ϵ, δ), we intentionally did not use the tightest conversion
(Canonne et al., 2020, 2021), but instead chose to use a conversion (Bun & Steinke, 2016a) that
overestimates δ and is interpretable as a upper bound on the probability that a particular level of
ϵ does not hold (Asoodeh et al., 2020). This appendix shows how we derive the correct ρ values
for the individual noisy queries given a target overall ρ privacy-loss budget. That overall ρ value is
then converted to an ϵ value given δ = 10−10.

Consider the univariate queries in the TDA defined as qijkl where i specifies the geographic level
(US, state, etc.), j specifies the node within the level i, k indexes the marginal query set (e.g.,
CENRACE) within the node, and l indexes the individual cells of that marginal query set (within
i, j, k).

The query strategy for the TDA consists of two parts: which queries are asked and what privacy-
loss budget should be used for each. In early versions of the TDA, the query strategy was symmetric
over geographic levels and nodes meaning that the same set of queries would be asked for every
geography and level; however, we have since generalized the strategy to allow for different query
sets to be asked for different levels. We require that the same set of queries be asked for every node
within a level. Similar to the generalization of which queries are asked for each level, we generalize
the privacy-loss budget allocations to allow for differences between and within levels.

We denote the relative precision of a query by cij × dijk where cij ∈ (0, 1] gives the ρ proportion
values for a specific node within a geographic level and dijk ∈ (0, 1] the ρ proportion for the kth
query within the specific node. Given the values {cij} and {dijk}, the goal is to find a parameter (ψ),
which we call the global scale, such that asking noisy queries with the discrete Gaussian mechanism
with parameter

σ2
ijkl =

(
ψ2

cijdijk

)
for queries {qijkl} results in ρ-zCDP.

We impose the following requirements for the structure of {cij} and {dijk}. First, we require that
for all i, j,

∑
k=1,···Kij

dijk = 1. That is within a level and node, the relative split of the precision
across queries always totals to 1. Second, let P (1, Ij) represent the indices of the directed path
between the root level (US) and block j. Then, we require that

∑
ij∈P (1,Ij) cij = 1,∀ j, meaning

that if we add up the proportion values cij for a given block and all nodes it is nested within, up
to the US, we get 1.

Theorem 2. The set of queries {qijkl} processed by the discrete Gaussian mechanism with param-
eters σ2

ijkl =
(

ψ2

cijdijk

)
where
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(1) All queries used by TDA are marginals
(2) cij ≥ 0; dijk ≥ 0 ∀ i, j, k 26

(3) For all i, j
∑
k=1,··· ,Kij

dijk = 1

(4)
∑
ij∈P (1,Ij) cij = 1,∀ j

results in ρ–zCDP with ρ = 1
ψ2 .

Proof. Applying Theorem 14 of Canonne et al., 2021 to queries {qijkl} we want to find ρ such that
1

ψ2

∑
i

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2 ≤ 2ρ.

In the case of the TDA, it is easiest to split the proof into two cases. The first being that the change
from x to x′ does not affect the block count totals (that is, the record change does not change the
given block). The second being that the change from x to x′ does affect the block count totals (the
record change does change the given block).
Case 1:
The change from x to x′ will affect the queries in exactly one node of each geographic level because
the record change did not change the geography of the record. Let j∗i be the node in level i that
is affected. Any queries outside of these nodes will have values of 0 for squared differences in the
queries for x and x′. Then,

1

ψ2

∑
i

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

=
1

ψ2

∑
i

∑
k

∑
l

(cij∗i dij∗i k)(qij∗i kl(x)− qij∗i kl(x
′))2

=
1

ψ2

∑
i

cij∗i

∑
k

(dij∗i k)
∑
l

(qij∗i kl(x)− qij∗i kl(x
′))2

≤ 1

ψ2

∑
i

cij∗i

∑
k

(dij∗i k)(1
2 + (−1)2)

[Since all queries are marginals, qij∗i kl(x) and qij∗i kl(x
′)

differ in at most 2 values of l]

=
1

ψ2

∑
i

cij∗i (1)(2)

[Since ∀ i, j
∑

k=1,··· ,Kij

dijk = 1]

=
2

ψ2

[Since
∑

ij∈P (1,Ij)

cij = 1,∀ j].

Therefore, ρ = 1
ψ2 .

Case 2:
Using i = I to denote the block geographic level (leaves of the hierarchy) and without loss of

26Functionally, if cij or dijk is 0, then the query is not asked.
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generality, let j∗I and j∗∗I be indices for the block nodes that were affected by the change from x

to x′, respectively. By design, we know that j∗I ̸= j∗∗I . Consider the generalization of this change
such that j∗i is the node at level i of the unit before the change from x to x′ and j∗∗i is the node
at level i after the change. By definition, at the US level, j∗1 = j∗∗1 , and it is possible that j∗i = j∗∗i
for other levels as well. For example, consider a change from x to x′ that changes the block of a
record but in a way such that the county is the same. Because of the tree hierarchy of geographic
levels, if j∗i = j∗∗i , then j∗i−1 = j∗∗i−1. Therefore, for all possible x to x′ changes in our case, there
exists S ∈ {1, · · · , I − 1} such that for j∗i = j∗∗i for all i ≤ S. Therefore,

1

ψ2

∑
i

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

=
1

ψ2

S∑
i=1

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

+
1

ψ2

I∑
i=S+1

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2.

Now consider the first part of the summation. Similar to Case 1, the change from x to x′ doesn’t
change the geography of the record at the given level, only at most the cell. Therefore, at most two
cells will be changed giving

1

ψ2

S∑
i=1

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

=
1

ψ2

S∑
i=1

∑
k

∑
l

(cij∗i dij∗i k)(qij∗i kl(x)− qij∗i kl(x
′))2

=
1

ψ2

S∑
i=1

cij∗i

∑
k

∑
l

(dij∗i k)(qij∗i kl(x)− qij∗i kl(x
′))2

≤ 1

ψ2

S∑
i=1

cij∗i

∑
k

(dij∗i k)(1
2 + (−1)2)

=
2

ψ2

S∑
i=1

cij∗i

[Since ∀ i, j
∑

k=1,···Kij

dijk = 1] .

Now consider the second half of the summation. We know that for the affected nodes j∗i and
j∗∗i , i > S all query marginals will be affected by exactly +1 or exactly -1 respectively. The queries
for all other nodes will be unchanged. Then,

1

ψ2

I∑
i=S+1

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

= 0 +
1

ψ2

I∑
i=S+1

cij∗i

∑
k

dij∗i k
∑
l

(qij∗i kl(x)− qij∗i kl(x
′))2
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+
1

ψ2

I∑
i=S+1

cij∗∗i

∑
k

dij∗∗i k

∑
l

(qij∗∗i kl(x)− qij∗∗i kl(x
′))2

≤ 1

ψ2

I∑
i=S+1

cij∗i

∑
k

dij∗i k(−1)
2 +

1

ψ2

I∑
i=S+1

cij∗∗i

∑
k

dij∗∗i k(1)
2

=
1

ψ2

I∑
i=S+1

cij∗i +
1

ψ2

I∑
i=S+1

cij∗∗i

[Since ∀ i, j
∑

k=1,···Kij

dijk = 1] .

Pairing this with the earlier result yields

1

ψ2

∑
i

∑
j

∑
k

∑
l

(cijdijk)(qijkl(x)− qijkl(x′))2

≤ 2

ψ2

S∑
i=1

cij∗i +
1

ψ2

I∑
i=S+1

cij∗i +
1

ψ2

I∑
i=S+1

cij∗∗i

=
1

ψ2

(
S∑
i=1

cij∗i +

I∑
i=S+1

cij∗i

)
+

1

ψ2

(
S∑
i=1

cij∗i +

I∑
i=S+1

cij∗∗i

)

=
1

ψ2

(
I∑
i=1

cij∗i

)
+

1

ψ2

(
I∑
i=1

cij∗∗i

)

=
2

ψ2

[Since
∑

ij∈P (1,Ij)

cij = 1,∀ j ].

Therefore, ρ = 1
ψ2 . □
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