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Connections and Tradeoffs of Advanced 
Privacy Technologies



Threats and Tradeoffs of Privacy in ML

Privacy Tech Threat Strength of 
guarantee

Performance 
impact

Accuracy 
impact

Differential privacy leakage of training data 
through models

Homomorphic 
encryption

untrusted cloud’s access 
to data during computation

Hardware 
enclaves

untrusted cloud’s access 
to data during computation

Secure multi-party 
computation

untrusted cloud’s access 
to data during computation

Federated learning untrusted cloud’s access 
to data during computation



Combinations Needed

• DP and the others address orthogonal threats, so for 
fuller protection, DP should be combined with all others

• Hardware enclaves can speed up homomorphic 
encryption and secure multi-party computation

• Federated learning has weak privacy, but can be 
combined with DP for strong privacy, with some loss in 
accuracy



Broader Connections

• Connections exist between privacy and other desirable 
properties of ML

• In theory, this could mean that technologies for one 
property could be useful for other properties

• Practical approaches to exploit these connections are  
still being researched

(NOTE: We started talking about these in the DP lecture, but we rushed and didn’t go into any 
details and all connections.  We will discuss those today, but note that the slides are identical.)



Myriad of ML Concerns

6



Explaining and Harnessing 
Adversarial Examples

Goodfellow,  Shlens, Szegedy

Adversarial Examples
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Many Concerns Are Related

Privacy

Fairness

Robustness to 
Dataset Poisoning

Statistical Validity

Robustness to 
Adversarial Examples

Stability 
constraints on 
ML processes

Generalization
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● DP is a strong stability constraint on computations 
running on datasets: it requires that no single data point in 
an input dataset has significant influence over the output

● It has been been shown to improve a variety of desirable ML 
properties beyond privacy, e.g.:
● DP for Adversarial Robustness (Lecuyer+19)
● DP for Generalization (Hardt-16, Bassily+16)
● DP for Fairness (Dwork+13)
● DP for Statistical Validity (Dwork+15)

Example: DP Improves More than Privacy



DP for Adversarial Robustness
(Lecuyer+19)



● Adversary finds a tiny perturbation to a correctly classified input that 
causes misclassification

Adversarial Examples
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softmax
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hidden 
layers

input 
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Q(x+α)

hidden 
layers
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DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP
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DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP
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1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x
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How It Works

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x
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How It Works

DP’s stability bounds on 
expected scores:

:

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x
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DP for Generalization
(Hardt-16)
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Generalization

• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization
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Generalization

• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)
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A= training function; D= input distribution; S= training set; n=|S|;       = loss function

Generalization Error



Generalization

• We care about R. If we manage to minimize RS, all that 
matters is the generalization error.  Many approaches exist 
that improve generalization error (mostly statistical)
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• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)

A= training function; D= input distribution; S= training set; n=|S|;       = loss function

Generalization Error



Generalization ⬄ Stability

• Thm:  In expectation, generalization equals stability
• Proof in (Hardt-16)

• An algorithm is stable if its output doesn’t change much if 
we perturb the input sample in a single point

• The theorem says that stability is necessary and sufficient 
for generalization  
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DP for Generalization

• DP is a strong stability constraint on algorithms
• DP thus provides an algorithmic approach to generalization     

in ML: make the training function DP
• It’s been long known that adding randomness into training 

improves generalization
• The level of randomness added is likely insufficient to offer 

meaningful privacy, but the link DP<->generalization suggests 
that privacy isn’t fundamentally at odds with functionality in ML
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DP for Fairness
(Dwork+13)
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Individual Fairness

● People who are similar from the perspective of the task at 
hand should be treated similarly

○ E.g., people with similar capabilities w.r.t. to a graduate 
program should all be either admitted or rejected

● But in ML, because of data biases and algorithmic 
amplification of them, small changes in people’s relevant 
capabilities can lead to large changes in the predictions

● That’s a sign of instability of the prediction function
35
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DP for Individual Fairness

● Approach: make the prediction function DP
○ Similar to PixelDP, apply extension of DP to a distance metric 

among people with respect to their abilities for a task

● While in theory interesting, this approach is not very practical 
because it relies on a good distance metric among people, which is 
hard to define

36
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DP for Statistical Validity
(Dwork+15)
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False Discoveries

• Ideal scientific method: Formulate your hypothesis, 
design your experiment to collect data, test your 
hypothesis on the data, report finding if statistically 
significant, and throw away the data.

• In reality: data is collected and reused to refine 
hypotheses, and the new hypotheses are tested on 
the same data, multiple times.

• Adaptive data reuse breaks assumptions of 
independence between hypotheses and test data, 
which hypothesis tests make to ensure statistical 
validity of the results. Referred to as p-hacking.
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● A baseline approach to allow statistical validity on top of a 
dataset collected from one study is to split the dataset into k 
components, where k is the number of hypotheses you 
anticipate testing on that dataset adaptively

● Each hypothesis runs on n/k points, so you can only run k<<n 
adaptive hypothesis tests on a dataset of size n

● Can we do better?
39

A Baseline Approach
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DP for Statistical Validity

• Problem: you’re learning too much from the dataset, therefore         
your conclusions may overfit it and inherit its biases

• Approach: make hypothesis tests DP and run on entire dataset

• Recall DP supports adaptive composition.  If you formulate a new 
hypothesis based on the results of a DP statistical test, and then you 
test again on the same dataset, you still have a bound on how much 
information you’ve extracted from your observations

• You can thus bound the number of tests you can perform while 
maintaining statistical validity.  With advanced composition, the 
number of adaptive tests you can afford to run is O(n^2)



● Many challenges in ML can be attributed to instability of some algorithm 
involved in learning: training, prediction, testing

● DP is a very strong stability constraint on algorithms.  It thus has broad 
connections with many desirable properties in ML:
○ Training set privacy: make training function DP
○ Adversarial robustness: make prediction function DP
○ Generalization: make training function DP
○ Fairness: make prediction function DP
○ Statistical validity: make hypothesis test or model evaluation DP

● However, DP may be overly strong for some of these, and that impacts 
accuracy!  Balance is needed, and future research may provide that

Take-Aways
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