
Privacy-Preserving Systems
(a.k.a., Private Systems)

CU Graduate Seminar

Instructor: Roxana Geambasu
1

Private Collaborative Learning
● Secure multi-party computation

● Federated learning

2

Private Collaborative Learning

What If No Central Aggregation of Data?

Locations

Messages

Heartbeats

Clicks

Cloud

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

What If No Central Aggregation of Data? (cont.)

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks
• Secure multiparty computation

• Federated learning

What If No Central Aggregation of Data? (cont.)

Case 1: Money Laundering Detection

• Banks want to detect money
laundering using machine
learning.

• Criminals conceal illegal
activities across many banks.

• Banks want to jointly compute
a model on customer
transaction data, but cannot
share data.

Secure Multiparty Computation

• Parties emulate a trusted
third party via cryptography.

• No party learns any party’s
input beyond the final result
(trained model).

• Performance is a challenge,
but for simple computations
(such as computing linear
models) and few parties (up
to 10), this is practical.

[Yao82]

Case 2: Text Autocomplete

• Want to train a text
autocomplete model on many
users’ data but don’t want to
collect users’ data in a central
location.

• Each user trains a local, partial
model, and then the cloud
combines these models into a
global model, which it ships
back to the clients.

Federated Learning

● Your phone personalizes
the model locally, based
on your usage (A)

● Many users' updates are
aggregated (B) to form a
consensus change (C) to
the shared model

● The procedure is
repeated as new data
becomes available

Credit: Google AI blog

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Existing Systems

MPC and FL are both practical. Here are a couple (of
multiple!) example offerings:

- Inpher’s XOR Secret Computing
- Google’s Tensorflow Federated

https://inpher.io/xor-secret-computing/
https://www.tensorflow.org/federated

Cited References

(Yao82) Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, 1982.

The End
Private Collaborative Learning

MPC Details and Demo

by Pierre Tholoniat

Introduction

● General MPC setting
○ Multiple parties with private inputs
○ Emulate a trusted party to compute a function on their inputs
○ Without revealing anything else than the output

● How do MPC protocols work? How practical are they?
○ Pretty informal presentation
○ See the Pragmatic MPC textbook [1] and other references for details and proofs

15

Introduction

Two main threat models:

● Honest-but-curious adversary
○ Corrupt parties follow the protocol, but try to learn as much as they can
○ A.k.a passive or semi-honest adversary

● Malicious adversary
○ Corrupt parties can deviate from the protocol arbitrarily
○ A.k.a active adversary

● Today, we consider an honest-but-curious adversary
○ Simple setting to show essential techniques
○ Protocols can be converted from passive to active security

16

Outline

1. Shamir Secret Sharing
2. Evaluating Arithmetic Circuits with the BGW Protocol
3. MPC with Preprocessing: Beaver Triples
4. Implementation: Meta’s Private Computation Framework

17

1. Shamir Secret Sharing

Shamir, 1979 [8]

Setting:

● n parties, threshold t ≤ n
● A global secret y ∈ K := Fp is shared among parties
● Each party i has a share yi
● Notation for a sharing of y: [y] := (y1, …, yn)

Desired properties:

● Knowing k ≥ t shares is sufficient to reconstruct y
● Knowing k < t shares doesn’t reveal anything about y

18

How can secret-sharing be useful?

Example: secret key recovery

● Split your wallet key into n=5 backups servers
● Reconstruct the key from t servers when needed
● If t=1, a single corrupted server can steal your key
● If t=5, a single faulty backup prevents you from recovering your key
● If t=3, resilient against 2 corrupted colluding servers and 2 failures

We can also use secret-sharing for arbitrary MPC

19

Construction with polynomials

Lagrange interpolation:

● Fact: the only polynomial of degree ≤ t-1 with t roots or more is zero
● Consequence: any polynomial P ∈ Kt-1[X] is uniquely characterized by the list

of coordinate pairs (P(x1), …, P(xt)) for (x1, …, xt) distinct field elements
● Lagrange coefficients:

20

Construction with polynomials

Protocol:

● We (the secret owner/dealer) sample a random polynomial in Kt-1[X] such that
P(0) = y

● Fix public non-zero interpolation points x1, …, xn
● Distribute yi:= P(xi) to party i ∈ {1, …, n}
● Any group of t parties can reconstruct y:

● The Lagrange coefficients λi can be computed in advance, we just need a
linear combination of the shares to reconstruct the secret

21

2. Evaluating Arithmetic Circuits with the BGW Protocol

Ben-Or, Goldwasser and Widgerson, 1988 [9]

Can we perform operations on a secret-shared input?

● Example application: split a private key into n shares, and sign a document without
ever reconstructing the private key locally

● Any computation in Fp can be represented as an arithmetic circuit (why?)
● We just need to have secret-shared version of the + and x gates

Using multiple inputs:

● In the Shamir setting we had a trusted dealer that splits a secret into shares
● The dealer can be a (semi-honest) party that shares its own input with other parties
● We run multiple Shamir sharings in parallel and combine them with gates

22

Addition Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p + q = P(0) + Q(0)
○ R := P + Q is a valid Shamir polynomial (degree ≤ t-1 and R(0) = r)
○ Party i’s share is R(xi) = P(xi) + Q(xi)

● Parties can construct their share of the output locally, without any interaction!

23

Multiplication Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p * q = P(0) * Q(0)
○ R := P * Q satisfies R(0) = r but has degree ≤ 2(t-1), not a valid sharing
○ Goal: find another polynomial R’ with R’(0) = r and degree ≤ t

24

Multiplication Gate – Degree Reduction

Goal: find another polynomial R’ with R’(0) = r and degree ≤ t-1

Reducing degree by resharing coefficients:

● Observation: with Lagrange’s formula, we have
● Each party i can create a Shamir sharing of R(xi):

○ Choose a degree t-1 polynomial Ri such that Ri(0) = R(xi)
○ Distribute Ri(xj) to party j

Properties:

● Re-sharing requires extra communication
● Security against t-1 corrupt parties. We also need 2t-1 ≤ n to reconstruct R(0): honest majority.
● Corrupt parties are still semi-honest here (imagine a malicious party that re-shares garbage

coefficients)
25

3. MPC with Preprocessing: Beaver Triples

Beaver, 1991 [10]

● BGW multiplications are costly (in terms of interactions)
● We can save time by computing some things in advance
● MPC with preprocessing:

○ Offline phase: a trusted dealer generates input-independent cryptographic material
○ Online phase: parties use the material to save some time (less communication) when

evaluating the circuit
● Beaver triples are secret-shared tuples for multiplication

26

3. Beaver Triples

Generation:

1. Take a random tuple (a,b,c) in Fp such that c = a*b
2. Split it and distribute shares to the parties: [a], [b], [c]

Multiplication: we have [x], [y] and want [xy]

1. Each party reveals [x] - [a], d := x - a is now public
2. Each party reveals [y] - [b], e: y - b is now public
3. Each party computes locally [xy] = de + d[b] + e[a] + [c]

27

3. Beaver Triples

Security:

● x - a and y - b are one-time pad encryptions of x and y

Correctness:

 ∑ (de + d[b] + e[a] + [c])

= (x-a)(y-b) + (x-a)b + (y-b)a + c

= xy

28

Beaver Triples in a Circuit

Computational and communication cost:

● Each party just needs to broadcast 2 values ([x] - [a] and [y] - [b])
● In BGW, each party generates a polynomial and sends n values (one for each other

party)
● Triples don’t depend on the input, and can’t be reused, so we need to prepare

enough to evaluate the whole circuit
● There are techniques to generate triples in batches

Applicability:

● Beaver triples work with other types of secret sharing, not just Shamir and BGW
● The trusted dealer can be emulated by the parties themselves (e.g. with HE [3])
● Information-theoretic security: no computational assumptions

29

4. Implementation: Meta’s Private Computation Framework

● General purpose library to build MPC systems
● Open-source: https://github.com/facebookresearch/fbpcf
● Architecture from the whitepaper [2]:

30

https://github.com/facebookresearch/fbpcf

Cyptographic backend and scheduler

● Boolean circuits instead of arithmetic circuits
○ Inputs are secret-shared bits
○ AND and XOR instead of + and x
○ Easier to manipulate and compile programs

● Cryptographic primitives:
○ GMW secret sharing, a different scheme than BGW tailored for F2 and resilient against up to

n-1 corrupt parties (BGW needs a honest majority)
○ Beaver triples for AND gates
○ https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

● Scheduler:
○ Keep track of intermediate results
○ Order gates and execute them
○ Supports multithreading

31

https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

C++ types and operators

● Frontend types: special C++ types for Bit, Int, BitString
● Everything is reduced to bitwise operations (gates)
● Gates are passed to the scheduler
● Example: integer comparison.

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf
9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

32

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186
https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

Example application

● The millionaire game:
○ Alice and Bob
○ Each party has one (secret) input, corresponding to their wealth
○ The output of the circuit is one bit, corresponding to who is the richest (but not their wealth)
○ Parties shouldn’t learn anything else than the output

● https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/Milli
onaireGame.h

● Deployment: TCP socket communication, parties can run in Docker

33

https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h
https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h

Conclusion

● Simple setting: honest-but-curious adversary and information-theoretic
security

● Basic MPC techniques: Shamir secret sharing, BGW protocol, Beaver triples
● Local computations are lightweight (unlike FHE)
● But parties need to communicate more often

34

Conclusion

There are many other important concepts we didn’t cover. Some keywords:
● Malicious security: we can adapt protocols with MACs, ZK proofs and other

techniques (e.g. see the SPDZ family of protocols and its modern
implementations [4]).

● Oblivious transfer (OT): a useful primitive where a receiver privately picks one
of two secrets offered by a sender.

● Garbled circuits: evaluate circuits in constant number of rounds (BGW’s number
of rounds is proportional to the depth of the circuit).

● FHE and Homomorphic Secret Sharing: other ways of achieving MPC.
● Oblivious RAM (ORAM): hide data access patterns efficiently.

35

Conclusion

State-of-the-art MPC protocols can be practical:
● Usually with 2 or 3 active parties (think non-colluding cloud providers)
● But can handle large numbers of passives parties (think browsers) who share

their input once and let the active parties compute the output
● Primitives tailored for different use cases

Examples:
● AES evaluation on a secret-shared secret key [5]
● Distributed aggregation for contact tracing or telemetry [7]
● Training ML models on secret-shared data [6]

36

References
[1] D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic Introduction to Secure Multi-Party Computation,” SEC, vol. 2, no. 2–3, pp. 70–246, Dec. 2018, doi:
10.1561/3300000019.

[2] “Private Computation Framework 2.0 - Meta Research,” Meta Research. https://research.facebook.com/publications/private-computation-framework-2-0/
(accessed Mar. 08, 2023).

[3] N. P. Smart and T. Tanguy, “TaaS: Commodity MPC via Triples-as-a-Service,” in Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop, New York, NY, USA, Nov. 2019, pp. 105–116. doi: 10.1145/3338466.3358918.

[4] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Computation,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA, Nov. 2020, pp. 1575–1590. doi: 10.1145/3372297.3417872.

[5] I. Damgård and M. Keller, “Secure Multiparty AES: (Short Paper),” in Financial Cryptography and Data Security, vol. 6052, R. Sion, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 367–374. doi: 10.1007/978-3-642-14577-3_31.

[6] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for Machine Learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA, Oct. 2018, pp. 35–52. doi: 10.1145/3243734.3243760.

[7] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Scalable Computation of Aggregate Statistics,” presented at the 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 259–282. Accessed: Dec. 15, 2020. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

[8] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979, doi: 10.1145/359168.359176.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic fault-tolerant distributed computation,” in Proceedings of the
twentieth annual ACM symposium on Theory of computing, New York, NY, USA, Jan. 1988, pp. 1–10. doi: 10.1145/62212.62213.

[10] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomization,” in Advances in Cryptology — CRYPTO ’91, vol. 576, J. Feigenbaum, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 420–432. doi: 10.1007/3-540-46766-1_34.

37

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

The End
MPC Details and Demo

