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Private Collaborative Learning
● Secure multi-party computation

● Federated learning
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Private Collaborative Learning



What If No Central Aggregation of Data?
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• Secure multiparty computation

• Federated learning

What If No Central Aggregation of Data? (cont.)



Case 1: Money Laundering Detection

• Banks want to detect money 
laundering using machine 
learning.

• Criminals conceal illegal 
activities across many banks.

• Banks want to jointly compute 
a model on customer 
transaction data, but cannot 
share data.



Secure Multiparty Computation

• Parties emulate a trusted 
third party via cryptography.

• No party learns any party’s 
input beyond the final result 
(trained model).

• Performance is a challenge, 
but for simple computations 
(such as computing linear 
models) and few parties (up 
to 10), this is practical.

[Yao82]



Case 2: Text Autocomplete

• Want to train a text 
autocomplete model on many 
users’ data but don’t want to 
collect users’ data in a central 
location.

• Each user trains a local, partial 
model, and then the cloud 
combines these models into a 
global model, which it ships 
back to the clients.



Federated Learning

● Your phone personalizes 
the model locally, based 
on your usage (A)

● Many users' updates are 
aggregated (B) to form a 
consensus change (C) to 
the shared model

● The procedure is 
repeated as new data 
becomes available

Credit: Google AI blog

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html


Existing Systems

MPC and FL are both practical.  Here are a couple (of 
multiple!) example offerings:

- Inpher’s XOR Secret Computing 
- Google’s Tensorflow Federated

https://inpher.io/xor-secret-computing/
https://www.tensorflow.org/federated
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MPC Details and Demo

by Pierre Tholoniat



Introduction

● General MPC setting
○ Multiple parties with private inputs
○ Emulate a trusted party to compute a function on their inputs
○ Without revealing anything else than the output

● How do MPC protocols work? How practical are they?
○ Pretty informal presentation
○ See the Pragmatic MPC textbook [1] and other references for details and proofs
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Introduction

Two main threat models:

● Honest-but-curious adversary
○ Corrupt parties follow the protocol, but try to learn as much as they can
○ A.k.a passive or semi-honest adversary

● Malicious adversary 
○ Corrupt parties can deviate from the protocol arbitrarily
○ A.k.a active adversary

● Today, we consider an honest-but-curious adversary
○ Simple setting to show essential techniques
○ Protocols can be converted from passive to active security
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Outline

1. Shamir Secret Sharing
2. Evaluating Arithmetic Circuits with the BGW Protocol
3. MPC with Preprocessing: Beaver Triples
4. Implementation: Meta’s Private Computation Framework

17



1. Shamir Secret Sharing

Shamir, 1979 [8]

Setting:

● n parties, threshold t ≤ n
● A global secret y ∈ K := Fp is shared among parties
● Each party i has a share yi
● Notation for a sharing of y: [y] := (y1, …, yn)

Desired properties:

● Knowing k ≥ t shares is sufficient to reconstruct y
● Knowing k < t shares doesn’t reveal anything about y
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How can secret-sharing be useful?

Example: secret key recovery

● Split your wallet key into n=5 backups servers
● Reconstruct the key from t servers when needed
● If t=1, a single corrupted server can steal your key
● If t=5, a single faulty backup prevents you from recovering your key
● If t=3, resilient against 2 corrupted colluding servers and 2 failures

We can also use secret-sharing for arbitrary MPC
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Construction with polynomials

Lagrange interpolation:

● Fact: the only polynomial of degree ≤ t-1 with t roots or more is zero
● Consequence: any polynomial P ∈ Kt-1[X] is uniquely characterized by the list 

of coordinate pairs (P(x1), …, P(xt)) for (x1, …, xt) distinct field elements
● Lagrange coefficients:
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Construction with polynomials

Protocol:

● We (the secret owner/dealer) sample a random polynomial in Kt-1[X] such that 
P(0) = y

● Fix public non-zero interpolation points x1, …, xn
● Distribute yi:= P(xi) to party i ∈ {1, …, n}
● Any group of t parties can reconstruct y: 

● The Lagrange coefficients λi can be computed in advance, we just need a 
linear combination of the shares to reconstruct the secret
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2. Evaluating Arithmetic Circuits with the BGW Protocol

Ben-Or, Goldwasser and Widgerson, 1988 [9]

Can we perform operations on a secret-shared input?

● Example application: split a private key into n shares, and sign a document without 
ever reconstructing the private key locally

● Any computation in Fp can be represented as an arithmetic circuit (why?)
● We just need to have secret-shared version of the + and x gates

Using multiple inputs:

● In the Shamir setting we had a trusted dealer that splits a secret into shares
● The dealer can be a (semi-honest) party that shares its own input with other parties
● We run multiple Shamir sharings in parallel and combine them with gates
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Addition Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p + q = P(0) + Q(0)
○ R := P + Q is a valid Shamir polynomial (degree ≤ t-1 and R(0) = r)
○ Party i’s share is R(xi) = P(xi) + Q(xi)

● Parties can construct their share of the output locally, without any interaction!
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Multiplication Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p * q = P(0) * Q(0)
○ R := P * Q satisfies R(0) = r but has degree ≤ 2(t-1), not a valid sharing
○ Goal: find another polynomial R’ with R’(0) = r and degree ≤ t
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Multiplication Gate – Degree Reduction

Goal: find another polynomial R’ with R’(0) = r and degree ≤ t-1

Reducing degree by resharing coefficients:

● Observation: with Lagrange’s formula, we have 
● Each party i can create a Shamir sharing of R(xi):

○ Choose a degree t-1 polynomial Ri such that Ri(0) = R(xi)
○ Distribute Ri(xj) to party j

Properties:

● Re-sharing requires extra communication
● Security against t-1 corrupt parties. We also need 2t-1 ≤ n to reconstruct R(0): honest majority. 
● Corrupt parties are still semi-honest here (imagine a malicious party that re-shares garbage 

coefficients)
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3. MPC with Preprocessing: Beaver Triples

Beaver, 1991 [10]

● BGW multiplications are costly (in terms of interactions)
● We can save time by computing some things in advance
● MPC with preprocessing: 

○ Offline phase: a trusted dealer generates input-independent cryptographic material
○ Online phase: parties use the material to save some time (less communication) when 

evaluating the circuit
● Beaver triples are secret-shared tuples for multiplication
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3. Beaver Triples

Generation:

1. Take a random tuple (a,b,c) in Fp such that c = a*b
2. Split it and distribute shares to the parties: [a], [b], [c]

Multiplication: we have [x], [y] and want [xy]

1. Each party reveals [x] - [a], d := x - a is now public 
2. Each party reveals [y] - [b], e: y - b is now public
3. Each party computes locally [xy] = de + d[b] + e[a] + [c]
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3. Beaver Triples

Security:

● x - a and y - b are one-time pad encryptions of x and y

Correctness: 

 ∑ (de + d[b] + e[a] + [c]) 

= (x-a)(y-b) + (x-a)b + (y-b)a + c 

= xy 
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Beaver Triples in a Circuit

Computational and communication cost:

● Each party just needs to broadcast 2 values ([x] - [a] and [y] - [b])
● In BGW, each party generates a polynomial and sends n values (one for each other 

party)
● Triples don’t depend on the input, and can’t be reused, so we need to prepare 

enough to evaluate the whole circuit
● There are techniques to generate triples in batches

Applicability:

● Beaver triples work with other types of secret sharing, not just Shamir and BGW
● The trusted dealer can be emulated by the parties themselves (e.g. with HE [3])
● Information-theoretic security: no computational assumptions
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4. Implementation: Meta’s Private Computation Framework

● General purpose library to build MPC systems
● Open-source: https://github.com/facebookresearch/fbpcf 
● Architecture from the whitepaper [2]:
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Cyptographic backend and scheduler

● Boolean circuits instead of arithmetic circuits
○ Inputs are secret-shared bits
○ AND and XOR instead of + and x
○ Easier to manipulate and compile programs

● Cryptographic primitives:
○ GMW secret sharing, a different scheme than BGW tailored for F2 and resilient against up to 

n-1 corrupt parties (BGW needs a honest majority)
○ Beaver triples for AND gates
○ https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp 

● Scheduler:
○ Keep track of intermediate results
○ Order gates and execute them
○ Supports multithreading
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C++ types and operators 

● Frontend types: special C++ types for Bit, Int, BitString
● Everything is reduced to bitwise operations (gates)
● Gates are passed to the scheduler
● Example: integer comparison. 

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf
9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186 
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Example application

● The millionaire game:
○ Alice and Bob
○ Each party has one (secret) input, corresponding to their wealth
○ The output of the circuit is one bit, corresponding to who is the richest (but not their wealth)
○ Parties shouldn’t learn anything else than the output

● https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/Milli
onaireGame.h 

● Deployment: TCP socket communication, parties can run in Docker
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Conclusion

● Simple setting: honest-but-curious adversary and information-theoretic 
security

● Basic MPC techniques: Shamir secret sharing, BGW protocol, Beaver triples
● Local computations are lightweight (unlike FHE)
● But parties need to communicate more often
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Conclusion

There are many other important concepts we didn’t cover. Some keywords:
● Malicious security: we can adapt protocols with MACs, ZK proofs and other 

techniques (e.g. see the SPDZ family of protocols and its modern 
implementations [4]).

● Oblivious transfer (OT): a useful primitive where a receiver privately picks one 
of two secrets offered by a sender. 

● Garbled circuits: evaluate circuits in constant number of rounds (BGW’s number 
of rounds is proportional to the depth of the circuit).

● FHE and Homomorphic Secret Sharing: other ways of achieving MPC.
● Oblivious RAM (ORAM): hide data access patterns efficiently.
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Conclusion

State-of-the-art MPC protocols can be practical:
● Usually with 2 or 3 active parties (think non-colluding cloud providers)
● But can handle large numbers of passives parties (think browsers) who share 

their input once and let the active parties compute the output
● Primitives tailored for different use cases

Examples:
● AES evaluation on a secret-shared secret key [5]
● Distributed aggregation for contact tracing or telemetry [7]
● Training ML models on secret-shared data [6]
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