
Privacy-Preserving Systems
(a.k.a., Private Systems)

CU Graduate Seminar

Instructor: Roxana Geambasu
1

Other Privacy Technologies
● Hardware enclaves

● Secure multi-party computation
● Federated learning

2

Hardware Enclaves

Hardware Enclaves (e.g., Intel SGX)

• Hardware-enforced isolated execution environment
• Data decrypted only on the processor
• Protect against an attacker who has root access or compromised OS
• Cloud offerings: Azure Confidential Computing, Google Asylo, …

System Threats to Trusted Execution

5

Threat Model for Hardware Enclaves

6

Elements of Secure Enclaves

● Secure boot: HW-verified measurement + first instruction
● On-chip program isolation
● Cryptographically protected external memory
● Execution integrity; no interference from attackers
● Remote Attestation
● Secret sealing

7

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

Enables verifying which code runs in the enclave and performing
key exchange. With this, you can bootstrap end-to-end encryption
between your clients and the authenticated (trusted) code of your
application.

Remote Attestation

14

15

16

Existing Systems

Hardware enclaves are a very real technology that is
available in multiple clouds, e.g.:

• Amazon: AWS EC2 Nitro Enclaves
• Microsoft: Azure SGX Enclaves
• Google: GCP Asylo

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-computing-enclaves
https://asylo.dev/

The End
Hardware Enclaves

Private Collaborative Learning

What If No Central Aggregation of Data?

Locations

Messages

Heartbeats

Clicks

Cloud

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

What If No Central Aggregation of Data? (cont.)

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks
• Secure multiparty computation

• Federated learning

What If No Central Aggregation of Data? (cont.)

Case 1: Money Laundering Detection

• Banks want to detect money
laundering using machine
learning.

• Criminals conceal illegal
activities across many banks.

• Banks want to jointly compute
a model on customer
transaction data, but cannot
share data.

Secure Multiparty Computation

• Parties emulate a trusted
third party via cryptography.

• No party learns any party’s
input beyond the final result
(trained model).

• Performance is a challenge,
but for simple computations
(such as computing linear
models) and few parties (up
to 10), this is practical.

[Yao82]

Case 2: Text Autocomplete

• Want to train a text
autocomplete model on many
users’ data but don’t want to
collect users’ data in a central
location.

• Each user trains a local, partial
model, and then the cloud
combines these models into a
global model, which it ships
back to the clients.

Federated Learning

● Your phone personalizes
the model locally, based
on your usage (A)

● Many users' updates are
aggregated (B) to form a
consensus change (C) to
the shared model

● The procedure is
repeated as new data
becomes available

Credit: Google AI blog

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Existing Systems

MPC and FL are both practical. Here are a couple (of
multiple!) example offerings:

- Inpher’s XOR Secret Computing
- Google’s Tensorflow Federated

https://inpher.io/xor-secret-computing/
https://www.tensorflow.org/federated

Cited References

(Yao82) Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, 1982.

The End
Private Collaborative Learning

MPC Details and Demo

by Pierre Tholoniat

Introduction

● General MPC setting
○ Multiple parties with private inputs
○ Emulate a trusted party to compute a function on their inputs
○ Without revealing anything else than the output

● How do MPC protocols work? How practical are they?
○ Pretty informal presentation
○ See the Pragmatic MPC textbook [1] and other references for details and proofs

31

Introduction

Two main threat models:

● Honest-but-curious adversary
○ Corrupt parties follow the protocol, but try to learn as much as they can
○ A.k.a passive or semi-honest adversary

● Malicious adversary
○ Corrupt parties can deviate from the protocol arbitrarily
○ A.k.a active adversary

● Today, we consider an honest-but-curious adversary
○ Simple setting to show essential techniques
○ Protocols can be converted from passive to active security

32

Outline

1. Shamir Secret Sharing
2. Evaluating Arithmetic Circuits with the BGW Protocol
3. MPC with Preprocessing: Beaver Triples
4. Implementation: Meta’s Private Computation Framework

33

1. Shamir Secret Sharing

Shamir, 1979 [8]

Setting:

● n parties, threshold t ≤ n
● A global secret y ∈ K := Fp is shared among parties
● Each party i has a share yi
● Notation for a sharing of y: [y] := (y1, …, yn)

Desired properties:

● Knowing k ≥ t shares is sufficient to reconstruct y
● Knowing k < t shares doesn’t reveal anything about y

34

How can secret-sharing be useful?

Example: secret key recovery

● Split your wallet key into n=5 backups servers
● Reconstruct the key from t servers when needed
● If t=1, a single corrupted server can steal your key
● If t=5, a single faulty backup prevents you from recovering your key
● If t=3, resilient against 2 corrupted colluding servers and 2 failures

We can also use secret-sharing for arbitrary MPC

35

Construction with polynomials

Lagrange interpolation:

● Fact: the only polynomial of degree ≤ t-1 with t roots or more is zero
● Consequence: any polynomial P ∈ Kt-1[X] is uniquely characterized by the list

of coordinate pairs (P(x1), …, P(xt)) for (x1, …, xt) distinct field elements
● Lagrange coefficients:

36

Construction with polynomials

Protocol:

● We (the secret owner/dealer) sample a random polynomial in Kt-1[X] such that
P(0) = y

● Fix public non-zero interpolation points x1, …, xn
● Distribute yi:= P(xi) to party i ∈ {1, …, n}
● Any group of t parties can reconstruct y:

● The Lagrange coefficients λi can be computed in advance, we just need a
linear combination of the shares to reconstruct the secret

37

2. Evaluating Arithmetic Circuits with the BGW Protocol

Ben-Or, Goldwasser and Widgerson, 1988 [9]

Can we perform operations on a secret-shared input?

● Example application: split a private key into n shares, and sign a document without
ever reconstructing the private key locally

● Any computation in Fp can be represented as an arithmetic circuit (why?)
● We just need to have secret-shared version of the + and x gates

Using multiple inputs:

● In the Shamir setting we had a trusted dealer that splits a secret into shares
● The dealer can be a (semi-honest) party that shares its own input with other parties
● We run multiple Shamir sharings in parallel and combine them with gates

38

Addition Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p + q = P(0) + Q(0)
○ R := P + Q is a valid Shamir polynomial (degree ≤ t-1 and R(0) = r)
○ Party i’s share is R(xi) = P(xi) + Q(xi)

● Parties can construct their share of the output locally, without any interaction!

39

Multiplication Gate

● Two inputs shared with Shamir’s scheme:
○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p * q = P(0) * Q(0)
○ R := P * Q satisfies R(0) = r but has degree ≤ 2(t-1), not a valid sharing
○ Goal: find another polynomial R’ with R’(0) = r and degree ≤ t

40

Multiplication Gate – Degree Reduction

Goal: find another polynomial R’ with R’(0) = r and degree ≤ t-1

Reducing degree by resharing coefficients:

● Observation: with Lagrange’s formula, we have
● Each party i can create a Shamir sharing of R(xi):

○ Choose a degree t-1 polynomial Ri such that Ri(0) = R(xi)
○ Distribute Ri(xj) to party j

Properties:

● Re-sharing requires extra communication
● Security against t-1 corrupt parties. We also need 2t-1 ≤ n to reconstruct R(0): honest majority.
● Corrupt parties are still semi-honest here (imagine a malicious party that re-shares garbage

coefficients)
41

3. MPC with Preprocessing: Beaver Triples

Beaver, 1991 [10]

● BGW multiplications are costly (in terms of interactions)
● We can save time by computing some things in advance
● MPC with preprocessing:

○ Offline phase: a trusted dealer generates input-independent cryptographic material
○ Online phase: parties use the material to save some time (less communication) when

evaluating the circuit
● Beaver triples are secret-shared tuples for multiplication

42

3. Beaver Triples

Generation:

1. Take a random tuple (a,b,c) in Fp such that c = a*b
2. Split it and distribute shares to the parties: [a], [b], [c]

Multiplication: we have [x], [y] and want [xy]

1. Each party reveals [x] - [a], d := x - a is now public
2. Each party reveals [y] - [b], e: y - b is now public
3. Each party computes locally [xy] = de + d[b] + e[a] + [c]

43

3. Beaver Triples

Security:

● x - a and y - b are one-time pad encryptions of x and y

Correctness:

 ∑ (de + d[b] + e[a] + [c])

= (x-a)(y-b) + (x-a)b + (y-b)a + c

= xy

44

Beaver Triples in a Circuit

Computational and communication cost:

● Each party just needs to broadcast 2 values ([x] - [a] and [y] - [b])
● In BGW, each party generates a polynomial and sends n values (one for each other

party)
● Triples don’t depend on the input, and can’t be reused, so we need to prepare

enough to evaluate the whole circuit
● There are techniques to generate triples in batches

Applicability:

● Beaver triples work with other types of secret sharing, not just Shamir and BGW
● The trusted dealer can be emulated by the parties themselves (e.g. with HE [3])
● Information-theoretic security: no computational assumptions

45

4. Implementation: Meta’s Private Computation Framework

● General purpose library to build MPC systems
● Open-source: https://github.com/facebookresearch/fbpcf
● Architecture from the whitepaper [2]:

46

https://github.com/facebookresearch/fbpcf

Cyptographic backend and scheduler

● Boolean circuits instead of arithmetic circuits
○ Inputs are secret-shared bits
○ AND and XOR instead of + and x
○ Easier to manipulate and compile programs

● Cryptographic primitives:
○ GMW secret sharing, a different scheme than BGW tailored for F2 and resilient against up to

n-1 corrupt parties (BGW needs a honest majority)
○ Beaver triples for AND gates
○ https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

● Scheduler:
○ Keep track of intermediate results
○ Order gates and execute them
○ Supports multithreading

47

https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

C++ types and operators

● Frontend types: special C++ types for Bit, Int, BitString
● Everything is reduced to bitwise operations (gates)
● Gates are passed to the scheduler
● Example: integer comparison.

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf
9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

48

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186
https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

Example application

● The millionaire game:
○ Alice and Bob
○ Each party has one (secret) input, corresponding to their wealth
○ The output of the circuit is one bit, corresponding to who is the richest (but not their wealth)
○ Parties shouldn’t learn anything else than the output

● https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/Milli
onaireGame.h

● Deployment: TCP socket communication, parties can run in Docker

49

https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h
https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h

Conclusion

● Simple setting: honest-but-curious adversary and information-theoretic
security

● Basic MPC techniques: Shamir secret sharing, BGW protocol, Beaver triples
● Local computations are lightweight (unlike FHE)
● But parties need to communicate more often

50

Conclusion

There are many other important concepts we didn’t cover. Some keywords:
● Malicious security: we can adapt protocols with MACs, ZK proofs and other

techniques (e.g. see the SPDZ family of protocols and its modern
implementations [4]).

● Oblivious transfer (OT): a useful primitive where a receiver privately picks one
of two secrets offered by a sender.

● Garbled circuits: evaluate circuits in constant number of rounds (BGW’s number
of rounds is proportional to the depth of the circuit).

● FHE and Homomorphic Secret Sharing: other ways of achieving MPC.
● Oblivious RAM (ORAM): hide data access patterns efficiently.

51

Conclusion

State-of-the-art MPC protocols can be practical:
● Usually with 2 or 3 active parties (think non-colluding cloud providers)
● But can handle large numbers of passives parties (think browsers) who share

their input once and let the active parties compute the output
● Primitives tailored for different use cases

Examples:
● AES evaluation on a secret-shared secret key [5]
● Distributed aggregation for contact tracing or telemetry [7]
● Training ML models on secret-shared data [6]

52

References
[1] D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic Introduction to Secure Multi-Party Computation,” SEC, vol. 2, no. 2–3, pp. 70–246, Dec. 2018, doi:
10.1561/3300000019.

[2] “Private Computation Framework 2.0 - Meta Research,” Meta Research. https://research.facebook.com/publications/private-computation-framework-2-0/
(accessed Mar. 08, 2023).

[3] N. P. Smart and T. Tanguy, “TaaS: Commodity MPC via Triples-as-a-Service,” in Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop, New York, NY, USA, Nov. 2019, pp. 105–116. doi: 10.1145/3338466.3358918.

[4] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Computation,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA, Nov. 2020, pp. 1575–1590. doi: 10.1145/3372297.3417872.

[5] I. Damgård and M. Keller, “Secure Multiparty AES: (Short Paper),” in Financial Cryptography and Data Security, vol. 6052, R. Sion, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 367–374. doi: 10.1007/978-3-642-14577-3_31.

[6] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for Machine Learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA, Oct. 2018, pp. 35–52. doi: 10.1145/3243734.3243760.

[7] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Scalable Computation of Aggregate Statistics,” presented at the 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 259–282. Accessed: Dec. 15, 2020. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

[8] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979, doi: 10.1145/359168.359176.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic fault-tolerant distributed computation,” in Proceedings of the
twentieth annual ACM symposium on Theory of computing, New York, NY, USA, Jan. 1988, pp. 1–10. doi: 10.1145/62212.62213.

[10] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomization,” in Advances in Cryptology — CRYPTO ’91, vol. 576, J. Feigenbaum, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 420–432. doi: 10.1007/3-540-46766-1_34.

53

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

The End
MPC Details and Demo

Connections and Tradeoffs of Advanced
Privacy Technologies

Threats and Tradeoffs of Privacy in ML

Privacy Tech Threat Strength of
guarantee

Performance
impact

Accuracy
impact

Differential privacy leakage of training data
through models

Homomorphic
encryption

untrusted cloud’s access
to data during computation

Hardware
enclaves

untrusted cloud’s access
to data during computation

Secure multi-party
computation

untrusted cloud’s access
to data during computation

Federated learning untrusted cloud’s access
to data during computation

Combinations Needed

• DP and the others address orthogonal threats, so for
fuller protection, DP should be combined with all others

• Hardware enclaves can speed up homomorphic
encryption and secure multi-party computation

• Federated learning has weak privacy, but can be
combined with DP for strong privacy, with some loss in
accuracy

Broader Connections

• Connections exist between privacy and other desirable
properties of ML

• In theory, this could mean that technologies for one
property could be useful for other properties

• Practical approaches to exploit these connections are
still being researched

(NOTE: We started talking about these in the DP lecture, but we rushed and didn’t go into any
details and all connections. We will discuss those today, but note that the slides are identical.)

Myriad of ML Concerns

59

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples

60

Myriad of ML Concerns

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples

Poisoning Attacks against Support
Vector Machines

Biggio, Nelson, Laskov

Data Poisoning

61

Myriad of ML Concerns

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples

Poisoning Attacks against Support
Vector Machines

Biggio, Nelson, Laskov

Data Poisoning

overfitting

Generalization

62

Myriad of ML Concerns

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples
The Secret Sharer: Evaluating and

Testing Unintended Memorization in
Neural Networks

Carlini, Liu, Erlingsson, Kos, Song

Privacy Loss

Poisoning Attacks against Support
Vector Machines

Biggio, Nelson, Laskov

Data Poisoning

overfitting

Generalization

63

Myriad of ML Concerns

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples
The Secret Sharer: Evaluating and

Testing Unintended Memorization in
Neural Networks

Carlini, Liu, Erlingsson, Kos, Song

Privacy Loss

Poisoning Attacks against Support
Vector Machines

Biggio, Nelson, Laskov

Data Poisoning

overfitting

Generalization

Man is to Computer Programmer as
Woman is to Homemaker?

Debiasing Word Embeddings

Bolukbasi, Chang, Zou, Saligrama, Kalai

Bias, Discrimination

64

Myriad of ML Concerns

Explaining and Harnessing
Adversarial Examples

Goodfellow, Shlens, Szegedy

Adversarial Examples
The Secret Sharer: Evaluating and

Testing Unintended Memorization in
Neural Networks

Carlini, Liu, Erlingsson, Kos, Song

Privacy Loss

Poisoning Attacks against Support
Vector Machines

Biggio, Nelson, Laskov

Data Poisoning
Man is to Computer Programmer as

Woman is to Homemaker?
Debiasing Word Embeddings

Bolukbasi, Chang, Zou, Saligrama, Kalai

Bias, Discrimination

overfitting

Generalization

False Discoveries

65

Myriad of ML Concerns

Many Concerns Are Related

Privacy

Fairness

Robustness to
Dataset Poisoning

Statistical Validity

Robustness to
Adversarial Examples

Stability
constraints on
ML processes

Generalization

66 [Hardt-16]

● DP is a strong stability constraint on computations
running on datasets: it requires that no single data point in
an input dataset has significant influence over the output

● It has been been shown to improve a variety of desirable ML
properties beyond privacy, e.g.:
● DP for Adversarial Robustness (Lecuyer+19)
● DP for Generalization (Hardt-16, Bassily+16)
● DP for Fairness (Dwork+13)
● DP for Statistical Validity (Dwork+15)

Example: DP Improves More than Privacy

DP for Adversarial Robustness
(Lecuyer+19)

● Adversary finds a tiny perturbation to a correctly classified input that
causes misclassification

Adversarial Examples

69

input
x

softmax
Q(x)

hidden
layers

input
x+α

softmax
Q(x+α)

hidden
layers

70

DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP

Curb sign
Yield sign

Stop sign

Speed limit

1.0

0.5… … …
input

x
layer

1
layer

2
layer

3
softmax

Q(x)

Stop sign

argmax

71

Q(x)

0.1
0.2
0.1
0.6

DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP

72

Curb sign
Yield sign

Stop sign

Speed limit

1.0

0.5

Q(x+α)

… … …
input
x+α

layer
1

layer
2

layer
3

softmax
Q(x+α)

0.1
0.7
0.1
0.1 Yield sign

argmax

DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP

… … …

input
x

layer
1

layer
2

layer
3

softmax
Q(x)

Stop sign

argmax

How It Works

0.1
0.2
0.1
0.6

73

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

… … …

input
x

layer
1

layer
2

layer
3

softmax

Stop sign

argmax
0.1
0.2
0.1
0.6

Qdp(x)

74

How It Works

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

75

… …

input
x

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x)

0.1
0.2
0.1
0.6

-DP

How It Works

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

76

… …

input
x

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x)

0.1
0.2
0.1
0.6

E(Qdp(x))

0.1
0.2
0.1
0.6 Stop sign

argmax

-DP

How It Works

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

… …

input
x

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x)

0.1
0.2
0.1
0.6

E(Qdp(x))

0.1
0.2
0.1
0.6

77

Stop sign

argmax

-DP

How It Works

DP’s stability bounds on
expected scores:

:

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

… …

input
x

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x)

0.1
0.2
0.1
0.6

E(Qdp(x))

0.1
0.2
0.1
0.6

E(Qdp(x)) DP’s stability bounds
on expected scores

78

Stop sign

argmax

-DP
Curb sign

Yield sign
Stop sign

Speed limit

1.0

0.5

How It Works

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

… …

input
x+α

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x+α)

Stop sign

argmax

E(Qdp(x+α))
E(Qdp(x+α))

0.1
0.3
0.1
0.5

0.1
0.3
0.1
0.5

79-DP
Curb sign

Yield sign
Stop sign

Speed limit

1.0

0.5

How It Works

expected-output
stability bounds

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

… …

input
x

layer
1

noise
layer

…

layer
2

layer
3

softmax
Qdp(x)

0.1
0.2
0.1
0.6

E(Qdp(x))

0.1
0.2
0.1
0.6

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x

E(Qdp(x))

80

Stop sign

argmax

-DP
Curb sign

Yield sign
Stop sign

Speed limit

1.0

0.5

How It Works

expected-output
stability bounds

DP for Generalization
(Hardt-16)

81

Generalization

• Central to ML is our ability to relate how a learning algorithm
fares on a sample set to its performance on unseen
instances. This is called generalization

82

Generalization

• Central to ML is our ability to relate how a learning algorithm
fares on a sample set to its performance on unseen
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)

83

A= training function; D= input distribution; S= training set; n=|S|; = loss function

Generalization Error

Generalization

• We care about R. If we manage to minimize RS, all that
matters is the generalization error. Many approaches exist
that improve generalization error (mostly statistical)

84

• Central to ML is our ability to relate how a learning algorithm
fares on a sample set to its performance on unseen
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)

A= training function; D= input distribution; S= training set; n=|S|; = loss function

Generalization Error

Generalization ⬄ Stability

• Thm: In expectation, generalization equals stability
• Proof in (Hardt-16)

• An algorithm is stable if its output doesn’t change much if
we perturb the input sample in a single point

• The theorem says that stability is necessary and sufficient
for generalization

85

86

DP for Generalization

• DP is a strong stability constraint on algorithms
• DP thus provides an algorithmic approach to generalization

in ML: make the training function DP
• It’s been long known that adding randomness into training

improves generalization
• The level of randomness added is likely insufficient to offer

meaningful privacy, but the link DP<->generalization suggests
that privacy isn’t fundamentally at odds with functionality in ML

86

DP for Fairness
(Dwork+13)

87

Individual Fairness

● People who are similar from the perspective of the task at
hand should be treated similarly

○ E.g., people with similar capabilities w.r.t. to a graduate
program should all be either admitted or rejected

● But in ML, because of data biases and algorithmic
amplification of them, small changes in people’s relevant
capabilities can lead to large changes in the predictions

● That’s a sign of instability of the prediction function
88

88

DP for Individual Fairness

● Approach: make the prediction function DP
○ Similar to PixelDP, apply extension of DP to a distance metric

among people with respect to their abilities for a task

● While in theory interesting, this approach is not very practical
because it relies on a good distance metric among people, which is
hard to define

89
89

DP for Statistical Validity
(Dwork+15)

90

False Discoveries

• Ideal scientific method: Formulate your hypothesis,
design your experiment to collect data, test your
hypothesis on the data, report finding if statistically
significant, and throw away the data.

• In reality: data is collected and reused to refine
hypotheses, and the new hypotheses are tested on
the same data, multiple times.

• Adaptive data reuse breaks assumptions of
independence between hypotheses and test data,
which hypothesis tests make to ensure statistical
validity of the results. Referred to as p-hacking.

91

● A baseline approach to allow statistical validity on top of a
dataset collected from one study is to split the dataset into k
components, where k is the number of hypotheses you
anticipate testing on that dataset adaptively

● Each hypothesis runs on n/k points, so you can only run k<<n
adaptive hypothesis tests on a dataset of size n

● Can we do better?
92

A Baseline Approach

92

DP for Statistical Validity

• Problem: you’re learning too much from the dataset, therefore
your conclusions may overfit it and inherit its biases

• Approach: make hypothesis tests DP and run on entire dataset

• Recall DP supports adaptive composition. If you formulate a new
hypothesis based on the results of a DP statistical test, and then you
test again on the same dataset, you still have a bound on how much
information you’ve extracted from your observations

• You can thus bound the number of tests you can perform while
maintaining statistical validity. With advanced composition, the
number of adaptive tests you can afford to run is O(n^2)

● Many challenges in ML can be attributed to instability of some algorithm
involved in learning: training, prediction, testing

● DP is a very strong stability constraint on algorithms. It thus has broad
connections with many desirable properties in ML:
○ Training set privacy: make training function DP
○ Adversarial robustness: make prediction function DP
○ Generalization: make training function DP
○ Fairness: make prediction function DP
○ Statistical validity: make hypothesis test or model evaluation DP

● However, DP may be overly strong for some of these, and that impacts
accuracy! Balance is needed, and future research may provide that

Take-Aways

94

Cited References

(Bassily+16) R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and
J. Ullman. Algorithmic stability for adaptive data analysis. STOC 2016

(Dwork+15) C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, A.
Roth. Preserving Statistical Validity in Adaptive Data Analysis. STOC
2015

(Hardt-16) M. Hardt. Stability as a foundation for machine learning. Blog
post, 2016

(Lecuyer+19) M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, S. Jana.
Certified Robustness to Adversarial Examples with Differential Privacy.
IEEE Security & Privacy, 2019

Cited References

(Vadhan, 2016) Vadhan. The complexity of differential privacy.
https://privacytools.seas.harvard.edu/files/privacytools/files/complexitypriv
acy_1.pdf.

https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf

The End
Connections and Tradeoffs of Advanced Privacy Technologies

