
Privacy-Preserving Systems
(a.k.a., Private Systems)

CU Graduate Seminar

Instructor: Roxana Geambasu
1

Homomorphic Encryption

Acknowledgement: This lecture was inspired by this 2019 talk by Prof. Raluca Ada Popa.2

http://acmsocc.org/2019/slides/socc19-slides-keynote-popa.pdf

Limitations of Traditional Encryption for
Data Exposure Risks in (ML) Clouds

3

Reminder: Data Risks in ML Ecosystems

4

Compute Cloud

Clouds Add Further Risks

5

Clouds Add Further Risks

Compute Cloud

6

Traditional Security’s Main Weakness

Compute Cloud

7

Attackers Eventually Break In

Compute Cloud

8

Assume the Attacker Will Break In

“in the cloud [...] applications need to protect themselves
instead of relying on firewall-like techniques”

9

Standard Use of Encryption

10

Standard Use of Encryption

11

Standard Use of Encryption

12

Standard Use of Encryption

13

Standard Use of Encryption

14

Standard Use of Encryption

15

Standard Use of Encryption

16

Need: Encryption With Computation

17

Need: Encryption With Computation

18

Need: Encryption With Computation

19

Advanced Cryptography

• Homomorphic encryption
• Secure multiparty computation

• Related: federated learning
• Together, we discuss these as “private collaborative learning”

• Secure enclaves
• Our goal: overview these so learners have a springboard

for learning more

20

The End
Limitations of Traditional Encryption for Data Exposure Risks in (ML) Clouds

21

Homomorphic Encryption Overview

22

Computation on Encrypted Data

23

Computation on Encrypted Data

24

Computation on Encrypted Data

25

Computation on Encrypted Data

26

Computation on Encrypted Data

27

Computation on Encrypted Data

28

Computation on Encrypted Data

‘

Example: RSA public key encryption, F = *

Enc(x) = xe mod n
Enc(y) = ye mod n
--- (multiply)
Enc(x)*Enc(y) = (xy)e mod n = Enc(x*y)

i.e., RSA is multiplicatively homomorphic 29

Computation on Encrypted Data

i.e., Paillier is additively homomorphic 30

Fully Homomorphic Encryption

• Enables general functions on encrypted data
• Despite progress, remains orders of magnitude too slow.
• However, specialized homomorphic encryption schemes,

developed for specific operations, are practical.
• Numerous useful systems have been developed, which

are worth considering to deploy in one’s most
vulnerable/exposed components.

[Gentry09]
31

The End
Homomorphic Encryption Overview

32

Background/Math behind These Schemes

33

Cryptography Basics

● Goal: allow intended recipients of a message to receive
the message securely:
○ Confidentiality
○ Integrity
○ Non-repudiation

● Two types:
○ Public-key or Symmetric-key
○ Public-key or Asymmetric-key

This and next few slides were inspired by this slide deck.
34

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

Important terms

● Plaintext -- the message in its original form.
● Ciphertext -- message altered to be unreadable by

anyone except intended recipients.
● Cipher -- The algorithm used to encrypt the message.
● Cryptosystem -- The combination of algorithm, key, and

key management functions used to perform
cryptographic operations.

35

Private Key Cryptography

● A single key is used for both encryption and decryption.
That’s why it’s called “symmetric” key as well.

● The sender uses the key to encrypt the plaintext and
the receiver applies the same key to decrypt the
message.

● The biggest difficulty with this approach is thus the
distribution of the key, which generally a trusted
third-party does.

36

Schematic representation of Private-key cryptography Schematic from here.
37

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

Public-Key Cryptography

● Each user has a pair of keys: a public key and a
private key.

● The public key is used for encryption. This is released
in public (usually through PKI).

● The private key is used for decryption. This is known
to the owner only.

38

Schematic from here.
39

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

RSA Cryptosystem

● Most famous public-key algorithm used today is RSA.
○ Developed in 1976 by MIT scientists, Ronald Rivest, Adi Shamir,

Leonard Adleman.
● Used in hundreds of software products and can be used for digital

signatures, or encryption of small blocks of data (such as to establish
symmetric session keys).

● Relies on the relative ease of finding large primes and the comparative
difficulty of factoring large integers for its security.

40

Algorithms

Key generation
Encryption
Decryption

41

RSA Key Generation ф(n) = Euler’s totient function (in
this case, because n=pq and p,q
primes, ф(n) = (p-1)(q-1))

42

RSA Encryption, Decryption

43

Key Generation

● Find two large primes, p and q.
● Form their product n = pq.
● Choose random integer e, which is relatively prime to (p-1)(q-1).
● The pair (n,e) is the public key.
● Use Extended Euclid’s Algorithm and Euler’s Theorem to calculate

d, which is e’s modular inverse.:
ed ☰ 1 (mod(p-1)(q-1))

● The pair (n,d) is the private key.
○ Like d, factors p,q must be kept secret (they can be destroyed

after d is generated).

44

RSA is Multiplicatively Homomorphic

Enc(x) = xe mod n
Enc(y) = ye mod n
-- (multiply ciphertexts)

Enc(x)*Enc(y) = (xy)e mod n = Enc(x*y) (to get the ciphertext
 of the multiplication
 of the cleartexts)

RSA is not known to be additively homomorphic.

45

Paillier Cryptosystem

● Similar assumptions as RSA, but it is additively
homomorphic.
○ And not known to be multiplicatively homomorphic…

● (Paillier is also secure against chosen-plaintext attack,
which RSA on its own is not.)

Next few slides were inspired by: hhttps://www.slideshare.net/DejanRadi1/paillier-cryptosystem
46

Paillier Key Generation

47

Paillier Encryption, Decryption

48

Paillier is Additively Homomorphic

49

Paillier is not known to be multiplicatively homomorphic.

(multiply the ciphertexts)

(to get the ciphertext of the addition of
the cleartexts)

AES Cryptosystem

● Symmetric-key system
● Used to encrypt messages once a session has been established.
● Much faster than public-key encryption!
● Doesn’t rely on difficult number-theory problem, but rather on passing the

cleartext through many transformation blocks that no one knows how to
break (yet?).

● Is not homomorphic, but its “deterministic” mode, which is vulnerable to
chosen-plaintext attacks, can support equality comparisons, hence it is
sometimes used in encrypted computation systems (b/c it’s a cheap
alternative to other deterministic encryption schemes).
○ (and you will use it in HW3)

Next few slides inspired from this slide deck 50

https://www.slideshare.net/atheistprince/aesadvanced-encryption-standard

How AES Works

● Repeats 4 main functions to encrypt data.
● Takes 128-bit block of data and a key and gives

ciphertext as output.
● Functions are:

I. Sub Bytes
II. Shift Rows

III. Mix Columns
IV. Add Key

51

How AES Works (cont.)

● The number of rounds performed by the algo depends on
the key size.

● Tradeoff between security and runtime (but in any case,
much faster and memory efficient than RSA for example).

Key size (bits) Rounds

128 10

192 12

256 14

52

Schematic
of AES
block cipher

53

The End
Background/Math behind These Schemes

54

Example System: Encrypted Database

55

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

56

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

57

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

58

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

59

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

60

Encrypted Databases

[Popa11]

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

61

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
queries on encrypted data.

[Popa11]
62

CryptDB in a Nutshell

• Observation: most SQL can be implemented with a few operations
(e.g., +, =, >)

• Methods:
• Employs an efficient encryption scheme for each operation: Paillier for +;

DET for =, order-preserving encryption for >, …
• Maintains multiple ciphertexts of the data, one for each encryption
• Redesigns the query planner to produce encrypted and transformed query

plans, transparently for DBMS and applications
• Evaluation on TPC-C benchmarks shows 27% performance

overhead

63

Existing Systems

• Academic
• CryptDB
• Cipherbase
• Autocrypt

• Industry
• Microsoft: AlwaysEncrypted
• Google: EncryptedBigQuery
• Skyhigh Security

64

https://github.com/CryptDB/cryptdb
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper33.pdf
https://autocrypt.org/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://github.com/google/encrypted-bigquery-client
https://www.skyhighsecurity.com/en-us/index.html

Cited References

(Gentry09) Craig Gentry. Fully homomorphic encryption
using ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, 2009.

(Popa11) Raluca Ada Popa, Catherine M. S. Redfield,
Nickolai Zeldovich, and Hari Balakrishnan. CryptDB:
Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of ACM Symposium on
Operating Systems, 2011.

65

The End
Example System: Homomorphic Databases

66

Demo: HE/FHE in Practice

67

Concrete

● Rust implementation of TFHE [1]
● FHE based on Learning With Errors (LWE)

hardness
● Boolean and arithmetic operations

○ Functions that can be compiled to circuits.
○ No arbitrary if/else statements or loops (why?)

● See notebook on Courseworks
○ Simple FHE circuits
○ Evaluating HE vs FHE runtime
○ Lightweight ML model inference on encrypted

data

Source: Zama.ai

68

Learning with Errors (LWE): Basis
● LWE is a fundamental problem in lattice-based cryptography, a promising area for developing

quantum-resistant cryptographic systems.
● It's based on the difficulty of solving a system of linear equations that have been intentionally

perturbed by a small amount of "noise."
● Problem:

○ You have a secret vector s with n integers modulo q (where q is a large prime number). You are
given a series of m equations (where m>=n). Each equation looks like this:

a_i · s + e_i = b_i (mod q)

 where:
○ a_i is a publicly known vector of n integers modulo q. a_i are chosen uniformly at random.
○ s is the secret vector of n integers modulo q that we want to find (dot is the dot product).
○ e_i is a small integer "error" term, chosen from a specific probability distribution (often a

discrete Gaussian distribution or a uniform distribution over a small range). The key is that they
are significantly smaller than q.

○ b_i is the result of the noisy linear combination, an integer modulo q, also publicly known.
● You are given a collection of pairs (a_i, b_i) and the goal of the search version of the LWE problem

is to recover the secret vector s.
69

Learning with Errors (LWE): Basis (cont.)

● LWE has been reduced to some worst-case lattice problems (shortest vector problem, closest
vector problem), which are believed to be hard even for quantum computers (i.e., finding a
solution requires exponential time in input size and quantum doesn’t seem to give an edge).

● Intuition why it’s hard:
○ The Noise: If the error term e_i were zero in all equations, then we would have a standard

system of linear equations modulo q. Such systems can be efficiently solved using
techniques like Gaussian elimination (modulo q). The introduction of the small, random
errors makes this direct algebraic approach fail. The noise obscures the underlying linear
relationship.

○ The Modulo Operation: Working modulo q (a finite field) adds another layer of complexity.
Standard techniques for solving linear systems over real numbers or integers don't directly
apply.

● For this reason, LWE is used as a basis for many FHE schemes. One example follows.

70

LWE-based FHE: Encryption

71

Secret key size, typical values: 512, 1024.

LWE-based FHE: Decryption

72

LWE-based FHE: Example Calculations

73

Addition example

74

Addition example (cont)

75

Plug in the values:

Addition example (cont)

76

THUS:
- The decryption works correctly as long as the noise e1+e2 remains small relative to q/2.
- This highlights the robustness of LWE-based FHE for addition, as the structure of the

encryption ensures the correct recovery of the original message.

Demo: Concrete

Notebook on courseworks.

77

Cited References

[1] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast Fully Homomorphic Encryption Over the
Torus,” J Cryptol, vol. 33, no. 1, pp. 34–91, Jan. 2020, doi:
10.1007/s00145-019-09319-x.

78

The End
Demo: HE Libraries

79

Homework 3 Overview

(CA walks through HW3 notebook, posted on
Courseworks)

80

