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Differential Privacy



Problem: Privacy-preserving statistical analyses

Goal: develop an interface that lets the analyst compute 
statistical queries without increasing the privacy exposure 
of individuals in the database to the analyst
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Recap from Last timeRecap: Take-aways from last time

1. Even without “PII,” it’s possible to learn sensitive info about 
individuals from data releases, especially with side information or 
multiple queries (a.k.a. attacker context).

2. It’s difficult to determine what’s “okay to release,” because 
vulnerability to attack depends on data distribution and attacker 
context.

3. Ad-hoc solutions (incl. anonymization, k-anonymity, 
aggregates-only) are unreliable, because they too depend on data 
distribution and attacker context.

4. Today: differential privacy, a rigorous privacy technology to 
establish “what’s okay to release” that does NOT depend on these!



Defining Privacy in Statistical Analyses



Requirements

• Requirements:
1. Resilient to side         

information
2. Persist under repeated 

queries (aka, closed 
under composition)

3. Independent of data 
distribution

Database,
trusted

Analyst,
untrusted

Statistical queries 
and results

User 
data

Inter- 
face

• We need the interface to enforce a rigorous definition of privacy



Strawman Definition 1

• Can be formalized, meets our requirements, and maps well onto 
semantic security (crypto’s standard for message secrecy)

• Problem: not achievable for the statistical analysis [Dwork+10] 
because learning about populations implies learning about 
individuals

[Dalenius-77] Access to the results of the analysis should not enable 
one to learn anything about any individual that one would not learn 
without access to the results.



Strawman Definition 2

Problem: still not achievable, because the result of the 
analysis cannot be independent of all individuals in the 
dataset

Definition: Access to the results of the analysis should not enable 
one to learn anything about any individual in the dataset that one 
would not learn if the individual was not in the dataset.



Strawman Definition 2 (cont.)

Problem: still not achievable, because the result of the 
analysis cannot be independent of all individuals in the 
dataset

Maybe weaken one of the bolded terms above?

Definition: Access to the results of the analysis should not enable 
one to learn anything about any individual in the dataset that one 
would not learn if the individual was not in the dataset.



Strawman Definition 3
Definition: Access to the results of the analysis should not enable 
one to learn anything about some (most?) individuals in the 
dataset that one would not learn if the individual was not in the 
dataset.

• Can be achieved (e.g., by sampling a few individuals from 
the dataset and performing the computation only on data 
of sampled individuals)

• For the lucky individuals we didn’t sample, this definition 
meets at least the second requirement, but not for the 
unlucky others



Strawman Definition 4
Definition: Access to the results of the analysis should not enable 
one to learn anything new confidently about any individual in the 
dataset that one would not learn if the individual was not in the 
dataset.



Strawman Definition 4 (cont.)

• But what do “anything new” and “confidently” mean?

Definition: Access to the results of the analysis should not enable 
one to learn anything new confidently about any individual in the 
dataset that one would not learn if the individual was not in the 
dataset.



Strawman Definition 4 (cont.)

• But what do “anything new” and “confidently” mean?
• Differential privacy formalizes these.

Definition: Access to the results of the analysis should not enable 
one to learn anything new confidently about any individual in the 
dataset that one would not learn if the individual was not in the 
dataset.
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Questions

• How would you define 
“anything new” and 
“confidently” to construct 
a privacy definition 
suitable for statistical 
analyses?

Proposed definition:

Access to the results of the analysis should 
not enable one to learn anything new 
confidently about any individual in the 
dataset that one would not learn if the 
individual was not in the dataset.



The End
Defining Privacy in Statistical Analyses



Differential Privacy



Differential Privacy (DP)

Lets us reason about how much statistical information, and 
how accurate, is “safe to share” in the face of an 
adversary with arbitrary side information and infinite 
computational power

(Dwork, 2006)

Definition: A randomized query                   is     − DP if for any pair of 
databases               differing in one entry and for any output set              :

The probabilities are taken over the randomness in   .



• Consider a prior distribution              on neighboring databases, 
modeling an adversary’s prior belief on a real database,    , and a 
database       that would have been obtained if a particular individual 
had not participated

• Given an output y from a    -DP randomized function f, the adversary 
will have a posterior belief on the database:  

• The definition of DP implies that this posterior distribution is close (in 
statistical distance, SD) to the posterior that would have been 
obtained if the function f had been run on X’ instead of X (Vadhan, 2016)

Bayesian Interpretation



Bayesian Interpretation (cont.)

• In particular, if the adversary’s prior 
included all the information about X 
except for the i’th row (the data of 
individual i), then the adversary’s 
posterior on row i would have been 
close to their prior on row i

• In that sense, the adversary does not 
learn “anything new” about any 
individual (i.e., that they couldn’t have 
learned from the rest of the database)

Strawman Definition 4
Access to the results of the 
analysis should not enable 
one to learn anything new 
confidently about any 
individual in the dataset that 
one would not learn if the 
individual was not in the 
dataset.



Hypothesis Testing Interpretation

• Consider an adversary who wants to test, based on the output of a 
DP query, the null hypothesis that an individual, i, has contributed 
their data to a database x.

• The definition of DP has been proven to be equivalent to requiring 
that any hypothesis test has either low significance (it has high 
false-positive rate, FPR), or low power (it has high false-negative 
rate, FNR) (Wasserman, 2010)



Statistical Testing Interpretation

• The parameter epsilon controls 
the trade-off between 
significance vs. power of any 
hypothesis test.

• In that sense, the adversary 
cannot test “confidently” 
whether a particular individual 
was in the dataset that was 
used to produce a particular 
output.

Strawman Definition 4
Access to the results of the 
analysis should not enable 
one to learn anything new 
confidently about any 
individual in the dataset that 
one would not learn if the 
individual was not in the 
dataset.



Lay Interpretation and Cautions

• Whatever an adversary learns about you, they did not learn it 
because of the use of your data in the DP query; they could have 
learned the same thing even if you hadn’t contributed your data

• This does not mean that the adversary cannot learn anything 
about you from the output of a DP query!

• Example
• Adversary learns that smoking correlates with lung cancer.
• Adversary knows that X smokes.
• He can deduce that X is more likely to get cancer than a nonsmoker.
• But this deduction was not caused by X’s participation in the study.



Company X’s
Terms and Conditions

[…]
You agree to allow Company X    
to use your data to compute and 
share results from statistical 
analyses under 0.1-user-level 
differential privacy.

Example Use of DP

Clicking        vs.        does not 
increase the privacy risk for 
any individual by more than 
11%.
• If the risk of anyone learning 

a particular aspect about 
you was low, it remains low 
despite Company X’s use of 
your data.
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Questions

• Considering DP’s interpretations, 
reason about how DP prevents the 
privacy attacks against aggregates 
that we discussed in previously:
• Membership inference attacks
• Data reconstruction attacks
• ML memorization-based attacks



The End
Differential Privacy



DP Parameters and Properties



The Epsilon Parameter

• All interpretations we gave assume “low” epsilon

• Intuitively, epsilon bounds the privacy loss of any 
individual through the output of the statistical analysis

• Smaller values mean better privacy but hurt accuracy
• For example, for many statistical analyses, epsilon < 1/n 

doesn’t make sense because DP error accumulates as o(1/n)

• Rule of thumb: epsilon = 0.1 for simple statistics, though 
for ML, epsilon = 1 or 10 are needed



DP Variant:        -DP

• Adds an additive delta term to the original definition
• Enables randomization mechanisms that improve the 

privacy–accuracy trade-off
• Roughly interpreted as “ε − DP with probability at least (1 − δ)”

Definition: A randomized query                   is          − DP if for any pair of 
databases               differing in one entry and for any output set              :

The probabilities are taken over the randomness in   .



The Delta Parameter

• Aim for values of delta that are less than the inverse of 
a super-linear polynomial in database size (n).

• Delta = 1/n is dangerous: permits preserving “privacy” by 
publishing the complete records of a small number of 
database participants!

• Rule of thumb: delta = 1/n2 is generally acceptable.



Properties

• Property 1: closure under post-processing
• Property 2: closure under composition
• Property 3: independent of data distribution



Property 1: Closure Under Post-Processing

• Trivially implies resilience to arbitrary side information,
• This was our first requirement

• Can allow safe, unlimited reuse of the outputs from DP 
computations, such as models trained with DP training 
procedures

• Question: How could this property be useful in addressing 
data exposure risks in modern ML ecosystems?



Usefulness

Thanks to 
post-processing, DP 
could be used to:
• Safely share 

models and 
features across 
teams

• Safely retain 
models and 
features beyond the 
raw data’s 
expiration date

• What else?

Data lake
(same as on 

the left)

Data lake

Model serving phase
x y

Model training phase

Training pipeline, config

Statistics 
generator

Example 
transformer

Example 
generator Evaluator

Manual design phase
Feature engineering

Data schema

(Manual) labeling

Model design and training/serving 
Pipeline implementations Evaluation

Trainer

Serving pipeline, config

Saved 
models

User 
profiles

Saved 
features

Saved 
models

User 
profiles

Saved 
features

Data logs
(n days)

Trained 
model

Example 
transformerFeaturizer

(user_id, 
context)

Model 
executor

Trained 
model

(y, prediction_id)

Decision

(action, prediction_id)

Online 
evaluator

Data logs
(n days)

Streaming 
engine

(x, y, action)

(x, y, action)



Property 2: Closure under Composition

• This was our third requirement
• Bounds how much new information an analyst can learn about any individual 

in the database across multiple queries
• Encodes that the more things you learn from a dataset, the more you also 

learn about individuals
• Tighter composition formulas exist, in which individuals’ privacy loss 

degrades as square root of the number of composed DP computations 
instead of linearly as above



Usefulness
• ML ecosystems release 

many models/statistics 
learned from the same 
users’ data, so it is 
important to bound the 
cumulative privacy 
risk resulting from all 
releases

• Composition enables 
modular development 
of complex systems 
from small parts, such 
as basic DP 
mechanisms and 
algorithms
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Property 3: Independent of data distribution

• DP is a property of the computation on a dataset, not of the dataset!
• Unlike k-anonymity or other anonymization techniques

• This was our third requirement
• But is has implications to utility, b/c it’s a worst-case definition that must hold 

under worst-case dataset!  Often noted as a disadvantage for this reason, but 
it’s also a big advantage to not have to worry about dataset properties… It’s a 
tradeoff, and DP, like crypto, makes worst-case assumptions…

Definition: A randomized query                   is          − DP if for any pair of 
databases               differing in one entry and for any output set              :

The probabilities are taken over the randomness in   .



Questions

• In what other ways can 
differential privacy, based 
on its properties, be 
leveraged to mitigate the 
data exposure risks in ML 
ecosystems that we 
previously discussed?



The End
DP Parameters and Properties



Basic DP Mechanisms



Making Statistical Analyses DP

Basic approach to making a function DP
1. Decompose it into sub-functions for which you either 

have a DP implementation, or that fit into a class of 
functions for  which you can apply one of the several 
basic DP mechanisms.

2. Use the composition and post-processing closure 
properties to determine the guarantee achieved by the 
overall function that combines the sub-functions.



Basic DP Mechanisms

• Multiple DP mechanisms exist, each supporting different 
classes of functions.
1. Laplace mechanism
2. Gaussian mechanism
3. Exponential mechanism
4. Smooth sensitivity mechanism
5. Test and release mechanism

• We’ll focus on the first two.



Laplace and Gaussian Mechanisms

• Suitable for some numeric functions:
• Counting, averaging, computing histograms, contingency 

tables, etc.
• Also doing one step of gradient descent, which is an average 

over some real values (more on that later)
• Approach: perturb each output dimension with 

independent draws from a calibrated Laplace/Gaussian 
distribution

*I denote the non-private function as fnp to distinguish it from the DP version, which I’ve thus far been denoting as f.



Laplace Mechanism

(Dwork, 2006)



L1-Sensitivity

• Define L1-sensitivity of a function                    as:

• That is, how much can one entry affect the value of the function?



• Define L1-sensitivity of a function                    as:

• That is, how much can one entry affect the value of the function?
• “How many people in a room have brown eyes?”: Sensitivity = ?
• “How many have brown eyes, how many have blue eyes, how many have 

green eyes, and how many have red eyes?”: Sensitivity = ?
• “How many have brown eyes and how many are taller than six feet?”: 

Sensitivity = ?

L1-Sensitivity



• Define L1-sensitivity of a function                    as:

• That is, how much can one entry affect the value of the function?
• “How many people in a room have brown eyes?”: Sensitivity = 1
• “How many have brown eyes, how many have blue eyes, how many have 

green eyes, and how many have red eyes?”: Sensitivity = 1
• “How many have brown eyes and how many are taller than six feet?”: 

Sensitivity = 2

L1-Sensitivity



Laplace Distribution

• The Laplace distribution, Lap(b), is the 
probability distribution with p.d.f.

• That is, a symmetric, double-exponential 
distribution
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Laplace Mechanism for DP

Laplace(x, ƒ np : Xn → Rk,ɛ)
1. Let ∆ƒ np be the ℓ1, sensitivity of fnp

2. For i =1 to k: Let zi  ~ Lap 
3. Output ƒ np(x) + (z1,…, zk)
 

Theorem: Laplace(.) satisfies (𝜖, 0) − DP.
Proof: See Aaron Roth’s lecture notes.

1.0
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0.8

0.6

0.4

−4 −2 2 4

https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture3.pdf


Privacy-Accuracy Trade-Off

• The noise distribution depends on 1/epsilon and L1-sensitivity of the 
computation, not on the database or its size!

• This means that a DP computation based on the Laplace mechanism will be 
more accurate when sensitivity is small and epsilon is large.



Privacy-Accuracy Trade-Off

• The noise distribution depends on 1/epsilon and L1-sensitivity of the 
computation, not on the database or its size!

• This means that a DP computation based on the Laplace mechanism will be 
more accurate when sensitivity is small and epsilon is large.

• Example: “How many people in a room have brown eyes?” Sensitivity = 1

 • For a small value of the 
function (small group of 
people), +/−7 matters.

• But for a large count (e.g., 
1,000), +/−7 doesn’t matter!

• So, the larger the database, 
the less the noise will impact 
accuracy.



Gaussian Mechanism

(Dwork, 2006)



Gaussian Mechanism for DP

• Enforces (𝜖, δ) − DP by perturbing the output of a real-valued 
function with noise drawn from a normal (a.k.a. Gaussian) 
distribution with mean 0 and standard deviation dependent on the 
L2-sensitivity (denoted here as    ) of the function:

• L2-sensitivity is defined similarly to L1, but we take the maximum 
2-norm (Euclidian distance) between f(x) and f(x’).



Laplace vs. Gaussian Mechanism

• The Laplace distribution (blue) has a better variance, but the tail of the 
Gaussian distribution (red) decreases faster.

• This is why Laplace gives pure DP but Gaussian needs the delta greater than 
0 to account for its sharp cut of the tails.

• Thus, Laplace gives better semantic but you can get better utility from 
Gaussian.
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When Laplace/Gaussian Don’t Work

• What if we have a nonnumeric function?
• “What’s the most common eye color in the 

room?”
• What if the perturbed answer isn’t 

“almost as good as” the exact answer?
• “Which price would bring the most money 

from a set of buyers?”
• What if L1/L2-sensitivity is large?

• “What’s the median salary in a salary 
database?”

Exponential 
mechanism

(McSherry, 2007)

Smooth sensitivity
(Nissim, 2007)

(and other mechanisms)



Cited References (No Particular Order)
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Questions

Determine L1-sensitivities of the 
following statistics:
• Number of families at zipcode 10027 

and number of families in NYC 
(zipcode 10027 is in NYC).
a. 1
b. 2
c. 3



Questions

Determine L1-sensitivities of the 
following statistics:
• Counts of families per NYC zip code.

a. 1
b. 2
c. number of zipcodes in NYC



Questions

Determine L1-sensitivities of the 
following statistics:
• Average age of N people in a group 

(assume age is 0-120).

a. 1
b. 2
c. 1/N
d. 120/N
e. N



The End
Basic DP Mechanisms



Composite DP Algorithms



DP Algorithms

• There are some DP libraries that implement basic 
algorithms for statistical data analysis.
• Google’s statistics library: basic statistics (Wilson, 2020)

• IBM’s library: k-means, regression, PCA (Holohan, 2019)

• TensorFlow privacy, Pytorch Opacus: stochastic gradient 
descent (SGD) (McMahan, 2018)

• We’ll discuss some algorithms from Google’s statistics 
library.
• But best to read their code!

https://github.com/google/differential-privacy/
https://github.com/IBM/differential-privacy-library
https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus


Bounded Sum

• Code
• Goal: compute sum over a set of values bounded in range [L,U]

• L, U assumed to be public knowledge or obtained through the 
“approximate bounds” DP algorithm (also implemented in Google’s lib)

• Method
• Laplace mechanism with sensitivity max(|L|,|U|)
• If L and U need to be computed privately too, then use part of the privacy 

budget for the approximate bounds algorithm, and the remainder for the 
Laplace mechanism (per the composition property of DP)

https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-sum.h


Bounded Mean

• Code
• Goal: compute mean over a set of values bounded in range [L,U]
• One option

• Compute DP sum: S (with half the budget)
• Compute DP count: N (with half the budget)
• Return S/N, but sum has sensitivity max(|U|,|L|)

• Observe
• For fixed N, the mean has L1-sensitivity 1/N * max(|U|,|L|)
• So, it’s tempting to compute the mean and apply Laplace for that 

sensitivity
• That assumes the count is public information but often it isn’t

https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-mean.h


Bounded Mean (cont.)

• Google’s implementation rewrites the average in terms relative to 
the middle of the interval [L,U]               

• That enables calculating the sum of all input values with lower 
sensitivity than it would take if doing noisy sum/noisy count:
|U – L|/2

Function 1, 
sensitivity: |U-L|/2

Function 2, 
sensitivity: 1

https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-mean.h


Bounded Variance

• Code
• Goal: compute variance over a set of values bounded in 

[L,U]
• Method

• Variance can be written as [Mean of squares − Mean squared].

• DP variance can therefore be computed by applying the 
preceding DP bounded mean algorithm twice, each time with 
half of the budget.

https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-variance.h


Approximate Bounds

• Code
• Goal: establish approximate [L,U] range over a set of values
• Method (described for non-negatives)

• Organize data into logarithmic histogram bins (e.g., [0,1], (1,2], (2,4], (4,8],…)
• Each bin keeps a DP count of the number of values in its range. Bin i holds the DP count 

of values in range
• Given a confidence parameter c, we choose a threshold t after which to declare a bin as 

non-empty with probability >=c. The formula for t is:

• L = leftmost bin with DP count greater than t. U = rightmost bin with DP count greater 
than t

(Wilson, 2020)

https://github.com/google/differential-privacy/blob/main/cc/algorithms/approx-bounds.h


Approximate Bounds (cont.)

• Example: base = 2, num_bins = 4, inputs = {0, 0, 0, 0, 1, 3, 7, 8, 8, 8}
• The bins and (non-DP) counts are [0, 1]: 5 ; (1, 2]: 0 ; (2, 4]: 1 ; (4, 8]: 4
• If success_probability = .9 and epsilon = 1, we get threshold t = 3.5
• Since the count of bin [4, 8] > t, we would return max := 2^3 = 8
• Since the count of bin [0, 1] > t, we would return min := 0
• With DP counts, the procedure gives approximate values of course

• The parameters of this scheme—num_bins, base—are not trivial to set 
without some external knowledge of the rough range you want to capture
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Task for Home

• Inspect the code in Google’s statistics library corresponding to:
• Bounded sum
• Bounded mean
• Bounded variance
• Approximate bounds
• And any other function you wish.

https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-sum.h
https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-mean.h
https://github.com/google/differential-privacy/blob/main/cc/algorithms/bounded-variance.h
https://github.com/google/differential-privacy/blob/main/cc/algorithms/approx-bounds.h
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DP SGD Algorithm



Stochastic Gradient Descent (SGD)

• DP version was described in (Abadi, 2016) and 
implemented in several libraries, including Tensorflow 
Privacy and Pytorch Opacus

• Without privacy, SGD is:
• Repeated

• Sample a batch from input dataset
• Calculating ∇θ with respect to the loss function
• θ := θ + ∇θ

• With privacy, at each iteration you clip and noise the 
gradients ∇θ using the Gaussian mechanism

https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus


Differentially Private SGD (Outline)
Input: Examples                     loss function                                  . Parameters: learning rate    , 
noise scale   , batch size   , gradient norm bound
Initialize     randomly
for              do
  Take a random sample     with sampling probability
  Compute gradient
  For each            , compute
  Clip gradient
  
  Add noise
  
  Descent

Output     and compute the overall privacy cost (      ) using a privacy accounting method



Differentially Private SGD (Outline)
Input: Examples                     loss function                                  . Parameters: learning rate    , 
noise scale   , batch size   , gradient norm bound
Initialize     randomly 
for              do
  Take a random sample     with sampling probability
  Compute gradient
  For each            , compute
  Clip gradient
  
  Add noise
  
  Descent
  
Output     and compute the overall privacy cost (      ) using a privacy accounting method



Privacy Analysis

• The preceding algorithm receives as arguments a noise scale factor    , 
gradient norm C, batch size L, and number of iterations T.

• Because each step uses the Gaussian mechanism, the gradient at each step 
is (ε,δ) − DP with respect to the batch. ε,δ are determined from σ.

• Question: What’s the DP guarantee after many steps for the gradient with 
regard to the dataset? Answer: Apply the amplification theorem and 
composition.

(ε,δ) − DP

Amplification 
theorem

Advanced 
composition

One step,
within the batch

One step,
within the dataset

Many steps,
within the dataset

(2qε, qδ) − DP



Determining ε,δ From σ

• To make a real-valued function DP with the Gaussian 
mechanism, we add noise from a normal distribution 
with standard deviation shown to the right.

• In the preceding algorithm, we added noise with 
standard deviation σC, where C = Δ2.

• Fixing δ to something reasonable, we can now compute 
ε based on σ, as shown on the right.

(ε,δ) − DP

Amplification 
theorem

Advanced 
composition

One step,
within the batch

One step,
within the dataset

Many steps,
within the dataset

(2qε, qδ) − DP



Amplification Theorem

• N: data size; L: size of each batch
• Let q = L/N
• Amplification theorem: if gradient is (ε,δ) − DP within 

the batch, then it is (2qε, qδ) − DP within the dataset

(ε,δ) − DP

Amplification 
theorem

Advanced 
composition

One step,
within the batch

One step,
within the dataset

Many steps,
within the dataset

(2qε, qδ) − DP



Advanced Composition

• Applying the same (ε,δ) − DP algorithm T times will give 
an                        − DP algorithm.

(ε,δ) − DP

Amplification 
theorem

Advanced 
composition

One step,
within the batch

One step,
within the dataset

Many steps,
within the dataset

(2qε, qδ) − DP
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The End
DP SGD Algorithm



Demo: DP Neural Network Training



Demo

• Demo link (accessible to Columbia Lionmail accounts) 

https://drive.google.com/file/d/1Zc4ImTz1XipZijeO54GxMyOJBlnnxwXE/view?usp=sharing


Homework 2 Overview

(CA walks through HW2 notebook, posted on 
courseworks)



Broader View on DP
● definition variations
● units of protection
● other mechanisms
● broader connections to other properties of statistical analyses

This section: not for midterm!
Its purpose: broaden your 
perspective on privacy and its 
connections to other properties



Broader View on DP
● definition variations
● units of protection
● other mechanisms
● broader connections to other properties of statistical analyses



A randomized computation                 is   -DP if
    

Why This Definition?

87

● DP stipulates that the distance between the probability distributions over the 
outputs shall be small when the distance between the input datasets is small.

● But why those particular choices of distance functions: hamming for inputs, 
multiplicative measure of distance between output probability distributions 
(with optional additive factor)?



● What if we changed the multiplicative measure to statistical distance:

● Not a well-behaved definition!
○ Depending on delta, it either does not permit useful computations or     

permits mechanisms with poor privacy.

One (Bad!) Alternative

88

A randomized computation                 is “  -alternative-DP” 
if
    

• When                  , with proba ½  we get an answer independent of the dataset.
• When                  , the mechanism “with proba ½ output a random row of the dataset” 

satisfies the definition.  This semantic, we claimed, isn’t acceptable privacy. 



● What if we changed the multiplicative measure to statistical distance:

● Not a well-behaved definition!
○ Depending on delta, it either does not permit useful computations or 

permits mechanisms with poor privacy.

● On the other hand, (ε,δ)-DP is a well-behaved and very popular definition!
○ Are there more?

One (Bad!) Alternative

89

A randomized computation                 is “  -alternative-DP” 
if
    



Why Need Other Definitions?
● Multiple definitions of privacy have been introduced.
● Some introduce different distance functions between the output 

distributions.
● Primary reason is to be able to analyze certain randomness 

distributions better (with tighter bounds):
○ E.g., Gaussian mechanism cannot be analyzed with epsilon-DP, it 

needs a delta>0.
● Another reason is to analyze composition more tightly.
● Example: advanced composition with (epsilon, delta)-DP.
      



Advanced Composition with (ε,δ)-DP
• Basic composition (akin to pure DP):

• Advanced composition (gives only (ε,δ>0)-DP, whether fi are 
pure or not pure DP):



When Is Advanced Better than Basic?
● Wlog assume pure DP functions fi

 (𝛿=0) and fix 𝛿’= 10-6.

● Advanced composition is better than basic composition when:

● Another good way to look at this is the global privacy budgeting 
perspective, of which you’ll hear in some papers we’ll read in the 
second part of course.
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Global Privacy Budgeting 
● Think of the parameters (εg, δg) of the computation                         

as fixed. They represent the global guarantee you want to enforce 
across all computations you do on the dataset, k computations in 
total.

● Then, asymptotically as k grows, basic composition requires 
allocating ε~O(1/k) for each computation fi, while advanced 
composition requires ε~O(1/sqrt(k)) foreach computation fi.

● This scalability benefit becomes critical when you do a lot of 
computations, for example as part of a big iterative process like 
stochastic gradient descent (SGD).
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Example
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• Suppose the number of functions fi is fairly large (e.g., 𝑘=50K) 
and the global privacy parameters are not too big (e.g., 𝜀g=1 and 
𝛿g=10−6). And let’s assume 𝛿=0 (fi are all pure DP), hence 𝛿’=10−6.

• For basic composition, we need 𝜀=𝜀g/𝑘=2e-5 for each fi to 
maintain 𝜀g=1.

• For advanced composition, we can calculate that 𝜀=7e-4 suffices 
for each fi in order to stay within 𝜀g=1. 

• Here, advanced composition increases the per-function allocation 
of the privacy budget by a factor of 35 over basic composition. 
This means less noise for each computation, so better accuracy.



Other Common Definitions

• Renyi-DP: Distance between output distributions is 
defined in terms of Renyi divergence.

• Analyzes composition with simpler arithmetic and eve a bit 
tighter than (epsilon, delta)-DP.

• Zero-concentrated DP: Similar to Renyi-DP, used in 
Census 2020.

• Gaussian DP



Renyi-DP
• Define:

• Then, epsilon-DP is equivalent to \forall y, D, D’:
| PrivacyLoss(y,D,D’) | <= epsilon

• Renyi DP defines privacy loss in terms of renyi divergence:

• (alpha, epsilon)-RDP is: \forall D, D’:
| PrivacyLoss_alpha(D,D’) | <= epsilon

   



Renyi-DP Properties
• Very simple arithmetic for composition (additive in epsilon parameter), but in 

such a way that it scales with sqrt(k)!
• So the benefit of (epsilon, delta)-DP but without the ugly math.

• Can always translate from Renyi DP to (epsilon, delta)-DP:

     for any alpha>1!!
• Any alpha will work, so you can try a bunch and take the one that gives the 

best epsilon-DP (this means, the tightest bound)!

• For these reasons, some DP-SGD implementations internally compose steps 
with Renyi-DP and eventually translate the guarantee into the best (epsilon, 
delta)-DP guarantee they can arrive at.



Broader View on DP
● definition variations
● units of protection
● other mechanisms
● broader connections to other properties of statistical analyses



Another Direction of Variation: DB Distance

• d(D, D’) <= 1: Hamming distance is standard and has 
interpretation of “adding or removing one entry or user.”

• But L1 distance is also possible: “modifying one entry”
• But what is “one entry”? A user? A data item of a user?...



Units of Protection

• User-level DP: all data points corresponding to a user are “hidden” at once.
• Need to bound user’s data contribution to the statistical analysis.

• Event-level DP: individual data point -- whatever that may be: a click, a 
location, a message… -- is “hidden” separately.
• Much weaker, but easier to maintain without losing utility.
• Over time, more data comes in in streaming settings.
• But adversary can still learn user patterns from outputs.

• User-time DP: user-level guarantee on a time-window basis.
• E.g., all users’ activities during a week are all “hidden” at once.
• A.k.a., “resetting privacy budgets.”
• Stronger semantic than event-level, more realistic to maintain compared 

to user-level DP.
• Apple adopts this.



Broader View on DP
● definition variations
● units of protection
● other mechanisms
● broader connections to other properties of statistical analyses



When Laplace/Gaussian Don’t Work

● What if we have a non-numeric function? 
○ “What’s most common eye color in the room?” 

● What if the perturbed answer isn’t “almost as 
good as” the exact answer? 

○ “Which price would bring the most money  
from a set of buyers?” 

● What if L1-sensitivity is large?
○ “What’s the median salary in a salary 

database?”

102

Exponential 
Mechanism

Smooth Sensitivity
(and other mechanisms)



Exponential Mechanism
(McSherry, 2007)
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● A mechanism                      for some abstract range Y, e.g.:
○ Y={Red, Blue, Green, Brown, Hazel}
○ Y={$1.00, $1.01, $1.02, …}

● Paired with a non-private, real-valued, quality scoring function:

(q(x,y) represents how good output y is for database x.)
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Make high-quality outputs 
exponentially more likely at a 
rate that depends on:
1. the sensitivity of the quality 

score, and
2. the privacy parameter.

Exponential Mechanism
(McSherry, 2007)
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Theorem: The Exponential mechanism is (𝜖, 0)-DP.

Proof: See Aaron Roth’s lecture notes: 
https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture3.pdf

Exponential Mechanism
(McSherry, 2007)



When Does Exponential Make Sense?
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Define:

When Does Exponential Make Sense?
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Define:

Theorem:

(Proofs in Aaron Roth’s lecture notes: https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture3.pdf)

When Does Exponential Make Sense?
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Define:

Theorem:

Corollary:

(Proofs in Aaron Roth’s lecture notes: https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture3.pdf)

When Does Exponential Make Sense?



● So if Y = {Red, Blue, Green, Brown, Hazel}, then we can answer 
“What is the most common eye color in this room?” with a color 
that is shared by at least                                              people, 

except with probability ≤ 𝑒-3 < .05.  

● Independent of the number of people in the room.
● Hence, again small relative error if # of people is large.
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When Does Exponential Make Sense?



● The exponential mechanism is based on the vector:

● We could have computed each of these values DP using the Laplace 
mechanism, and then through post-processing, we could have chosen the 
exact argmax from this vector while still preserving DP.  

● The question of whether Exponential vs. Laplace would do better in this case 
depends on the sensitivity of    , which we denote 

● In some cases (like the price example),       could be as large as 

● In contrast, the exponential mechanism only depends on  

111

 

Laplace vs. Exponential?



When Neither Laplace nor Exponential Make Sense

● They both depend on the     -sensitivity of the computation, which 
is a worst-case, database-independent notion of how much 
impact an entry could have on the computation’s output.

● When that’s big, what do we do?  Example: “What’s the median 
salary in a salary database?”

● For such cases, other mechanisms exist, which rely on sensitivity 
notions that are more tuned to the database.

● One such mechanism is smooth sensitivity.

112



Initial Idea
● L1-sensitivity (a.k.a. global sensitivity):

● For median, L1-sensitivity would be the whole range of the output domain, so 
for Laplace, you’d add noise proportional to the range.  That’s terrible!

● But I have a fixed database, couldn’t I use noise proportional to the sensitivity of 
the computation w.r.t. my database?  Maybe that’s much lower!

● Local sensitivity: 

● Problem with using local sensitivity to calibrate the noise is that local sensitivity 
can vary dramatically between neighboring datasets, so the noise distribution 
could become the distinguisher between two neighboring datasets.
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Example
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● Consider the median over n points {x1,..xn} in [0,1].

● If “my database” happens to have (n+1)/2 entries that are 0, and (n-1)/2 
entries that are 1, then the median is 0.  But if one entry changes from 0 to 1,     
the median becomes 1.  So local sensitivity of median for “my database” is 1.

● But if “my database” happens to have many data points near the medium 
(e.g., two thirds of the entries are 0 and one third is 1), then no individual 
entry’s change can change the output.  In this case, the local sensitivity of “my 
database” is 0.

● Could we hope to scale the noise by 0 in the latter case????!!!!

● Tempting, but no, for the reason mentioned before and illustrated even better 
in the next example…



Counter-Example
● Imagine a function whose value is 0 on all databases except for a very 

specific database, x, on which it is 10M.

● In that case, local sensitivity of a (any) database neighboring x is 0 
while local sensitivity on x is 10M.

● If you happen to have the database x, then applying noise proportional 
to 10M will leak a lot about that entry that differentiates x from every 
other neighboring database.

● So the draw of noise will leak information that your database is very 
likely x.

115



Smooth Sensitivity
(Nissim, et.al, 2007)
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● Smooth sensitivity: 

● Intuitively, we are smoothing out the local sensitivity around our database, 
x, so that it doesn’t change much between neighboring datasets.

● Theorem: Adding noise from Cauchy Distribution scaled by                                                                         
                                         gives (𝜖, 0)-DP.  This is called the smooth  
       sensitivity mechanism.
● For median, as well as some graph statistics, there are ways to compute 

smooth sensitivity efficiently (Nissim, et.al, 2007).



Other Mechanisms
● When global sensitivity is too high and computing smooth sensitivity is hard, 

there are other methods people have proposed:
○ Propose-test-release
○ Privately bounding local sensitivity
○ Releasing stable values

● I recommend reading about these algorithms in (Vadhan, 2016).
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Broader View on DP
● definition variations
● units of protection
● other mechanisms
● broader connections to other properties of statistical analyses



Broader Connections

• Connections exist between privacy and other desirable 
properties of ML

• In theory, this could mean that technologies for one 
property could be useful for other properties

• Practical approaches to exploit these connections are 
still being researched



Myriad of ML Concerns
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Many Concerns Are Related

Privacy

Fairness

Robustness to 
Dataset Poisoning

Statistical Validity

Robustness to 
Adversarial Examples

Stability 
constraints on 
ML processes

Generalization
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[Hardt-16]



● DP is a strong stability constraint on computations 
running on datasets: it requires that no single data point in 
an input dataset has significant influence over the output

● It has been been shown to improve a variety of desirable ML 
properties beyond privacy, e.g.:
● DP for Adversarial Robustness (Lecuyer+19)
● DP for Generalization (Hardt-16, Bassily+16)
● DP for Fairness (Dwork+13)
● DP for Statistical Validity (Dwork+15)

Example: DP Improves More than Privacy



DP for Adversarial Robustness
(Lecuyer+19)



● Adversary finds a tiny perturbation to a correctly classified input that 
causes misclassification

Adversarial Examples
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DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP



Curb sign
Yield sign

Stop sign

Speed limit

1.0

0.5… … …
input 

x
layer

1
layer

2
layer

3
softmax

Q(x)

Stop sign

argmax

13
2

Q(x)

0.1
0.2
0.1
0.6

DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP



13
3

Curb sign
Yield sign

Stop sign

Speed limit

1.0

0.5

Q(x+α)

… … …
input 
x+α

layer
1

layer
2

layer
3

softmax
Q(x+α)

0.1
0.7
0.1
0.1 Yield sign

argmax

DP for Adversarial Examples

● Problem: small input changes create large score changes
● Approach: make prediction function DP



… … …

input 
x

layer
1

layer
2

layer
3

softmax
Q(x)

Stop sign

argmax

How It Works

0.1
0.2
0.1
0.6

13
4

1. Randomize prediction function to make it DP
2. Use expected scores to choose argmax
3. Use DP’s stability bounds on expected scores to certify prediction on x
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DP for Generalization
(Hardt-16)

14
2



Generalization

• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization
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Generalization

• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)
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A= training function; D= input distribution; S= training set; n=|S|;       = loss function

Generalization Error



Generalization

• We care about R. If we manage to minimize RS, all that 
matters is the generalization error.  Many approaches exist 
that improve generalization error (mostly statistical)

14
5

• Central to ML is our ability to relate how a learning algorithm 
fares on a sample set to its performance on unseen 
instances. This is called generalization

Empirical Risk (Train Error)Risk (Out-of-sample Error)

A= training function; D= input distribution; S= training set; n=|S|;       = loss function

Generalization Error



Generalization ⬄ Stability

• Thm:  In expectation, generalization equals stability
• Proof in (Hardt-16)

• An algorithm is stable if its output doesn’t change much if 
we perturb the input sample in a single point

• The theorem says that stability is necessary and sufficient 
for generalization  

14
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DP for Generalization

• DP is a strong stability constraint on algorithms
• DP thus provides an algorithmic approach to generalization     

in ML: make the training function DP
• It’s been long known that adding randomness into training 

improves generalization
• The level of randomness added is likely insufficient to offer 

meaningful privacy, but the link DP<->generalization suggests 
that privacy isn’t fundamentally at odds with functionality in ML
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DP for Fairness
(Dwork+13)
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Individual Fairness

● People who are similar from the perspective of the task at 
hand should be treated similarly

○ E.g., people with similar capabilities w.r.t. to a graduate 
program should all be either admitted or rejected

● But in ML, because of data biases and algorithmic 
amplification of them, small changes in people’s relevant 
capabilities can lead to large changes in the predictions

● That’s a sign of instability of the prediction function
149
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DP for Individual Fairness

● Approach: make the prediction function DP
○ Similar to PixelDP, apply extension of DP to a distance metric 

among people with respect to their abilities for a task

● While in theory interesting, this approach is not very practical 
because it relies on a good distance metric among people, which is 
hard to define

150
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DP for Statistical Validity
(Dwork+15)
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False Discoveries

• Ideal scientific method: Formulate your hypothesis, 
design your experiment to collect data, test your 
hypothesis on the data, report finding if statistically 
significant, and throw away the data.

• In reality: data is collected and reused to refine 
hypotheses, and the new hypotheses are tested on 
the same data, multiple times.

• Adaptive data reuse breaks assumptions of 
independence between hypotheses and test data, 
which hypothesis tests make to ensure statistical 
validity of the results. Referred to as p-hacking.
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● A baseline approach to allow statistical validity on top of a 
dataset collected from one study is to split the dataset into k 
components, where k is the number of hypotheses you 
anticipate testing on that dataset adaptively

● Each hypothesis runs on n/k points, so you can only run k<<n 
adaptive hypothesis tests on a dataset of size n

● Can we do better?
153

A Baseline Approach
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DP for Statistical Validity

• Problem: you’re learning too much from the dataset, therefore         
your conclusions may overfit it and inherit its biases

• Approach: make hypothesis tests DP and run on entire dataset

• Recall DP supports adaptive composition.  If you formulate a new 
hypothesis based on the results of a DP statistical test, and then you 
test again on the same dataset, you still have a bound on how much 
information you’ve extracted from your observations

• You can thus bound the number of tests you can perform while 
maintaining statistical validity.  With advanced composition, the 
number of adaptive tests you can afford to run is O(n^2)



● Many challenges in ML can be attributed to instability of some algorithm 
involved in learning: training, prediction, testing

● DP is a very strong stability constraint on algorithms.  It thus has broad 
connections with many desirable properties in ML:
○ Training set privacy: make training function DP
○ Adversarial robustness: make prediction function DP
○ Generalization: make training function DP
○ Fairness: make prediction function DP
○ Statistical validity: make hypothesis test or model evaluation DP

● However, DP may be overly strong for some of these, and that impacts 
accuracy!  Balance is needed, and future research may provide that

Take-Aways
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