
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Byzantine Fault Tolerance

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

So far: Fail-stop failures

- Machine crashes, network breaks, partitions.
- Nodes are always “aware” of their own crashes, and

execute a designated recovery protocol.

- Q: how many replicas are needed to tolerate f
simultaneous fail-stop failures in consensus?

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

So far: Fail-stop failures

- Machine crashes, network breaks, partitions.
- Nodes are always “aware” of their own crashes, and

execute a designated recovery protocol.

- Need 2f+1 replicas to tolerate f simultaneous fail-stop
failures in consensus.

- Paxos, RAFT are two fault tolerance protocols that work
correctly (though don’t guarantee progress) in the context
of fail-stop failures.

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Byzantine Faults

- Nodes can fail arbitrarily, including deviate from the protocol
- may perform incorrect computation
- may give conflicting information to different parts of the system
- may collude with other failed nodes

- Potential causes:
- software bugs
- hardware failures
- malicious attacks

5

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Today: Byzantine Fault Tolerance (BFT)

- Can we provide state machine replication for a service in
the presence of Byzantine faults?

- This is just one specific topic related to the broader
domain of security and privacy in distributed
systems!

- Like with everything else, lots more to learn and keep up
with, so your advanced (non-foundational) DS learning
only begins with this class!

6

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Traditional State Machine Replication
(e.g., with (multi-)Paxos)

- Requires 2f+1 = 3 replicas if f=1
- Operations are totally ordered => correctness and consistency
- A two-phase protocol (last phase is “just” for catching up

partitioned nodes)
- Each phase waits for >= f+1 (i.e., 2 if f=1) of the nodes so you

have overlapping quora (for what purpose?).

7

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Traditional State Machine Replication
(e.g., with (multi-)Paxos)

8

- Requires 2f+1 = 3 replicas if f=1
- Operations are totally ordered => correctness and consistency
- A two-phase protocol (last phase is “just” for catching up

partitioned nodes)
- Each phase waits for >= f+1 (i.e., 2 if f=1) of the nodes so you

have overlapping quora (so at least one node remembers a
previously passed value).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

(Multi-)Paxos for BFT?
What could go wrong?

9

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

(Multi-)Paxos for BFT?
What could go wrong?

1. In multi-paxos, can’t rely on primary to assign seqno
a. Example?

2. Can’t just wait for f+1: the intersection of two
majorities may be a lying node.
a. Example?

3. Many other potential failure scenarios! Think of more
yourselves!

10

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Practical Byzantine Fault Tolerance
[Castro & Liskov, 1999]

Key differences:

1. Authentication: Messages are authenticated (a.k.a., signed) s.t. everyone
knows who sent them & can do the accounting of responses correctly.

2. Super-majority: Majority = 2f+1 now because you need to know that at
least f+1 non-faulty nodes have responded.
a. Intersection of any 2f+1 super-majorities formed at different times will result in

at least 1 non-faulty node who can “remember” any past agreed upon value.
This is so you can handle both f byzantine faults and potential partitioning.

3. Broadcast: Protocol works through broadcast b/c no individual node (such
as a “leader”) can be trusted.

4. Three phases: There are three proper phases in addition to “termination”.
11

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

BFT Protocol (1/4)
Phase 1: Pre-prepare
- Primary assigns a

sequence number to
a client request and
forwards it to all the
replicas

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

BFT Protocol (2/4)

13

Phase 2: Prepare
- Replicas exchange/

disseminate request
they got from the
primary to each other.

- Replicas wait to
receive 2f+1
confirmations for the
same <n,m>.

- If they get this, they
are “ready to commit.”

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

BFT Protocol (3/4)

14

Phase 3: Commit
- Replicas confirm to

one another that they
are ready to commit.

- Replicas wait to
receive “commit”
confirmation from 2f+1
replicas.

- Each node that gets
this, replies to the
client confirming that
he’s reached
consensus for <n,m>.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

BFT Protocol (4/4)

15

Termination:
- Client waits for f+1 replicas to send him confirmation of commit

before he continues operation.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

The End…

16

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

…But wait, there’s more!

17

A lot of topics this course doesn’t cover. Here are some keywords to
search for during your next phase of DS learning:
• Pub/sub systems
• Streaming systems
• Peer-to-peer systems
• Block chains
• Security in distributed systems: authentication, key management
• Privacy and distributed data protection
• Systems for ML
• Scheduling
• Capacity planning
• Content distribution networks
• Resource discovery systems
• Serverless computing

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Keep Learning!

18

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Acknowledgement

Pictures for the BFT protocol are from Kyle Jamieson’s
Distributed Systems class:
https://www.cs.princeton.edu/courses/archive/fall16/cos418/d
ocs/L9-bft.pdf

19

https://www.cs.princeton.edu/courses/archive/fall16/cos418/docs/L9-bft.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos418/docs/L9-bft.pdf

