
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Testing and Model Checking
Distributed Systems

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Properties

Want to ensure certain properties of distributed systems
• Safety (correctness at every step)
• Liveness (eventually, something will happen)
• Performance (something will happen within a certain time

or with a certain amount of resource)

Question: How do we ensure our DS achieves properties?

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

This Lecture

Part 1: Testing
– Usually checks safety in a best effort way, but it’s applied

directly on implementation.

Part 2: Model Checking
– Comprehensive checking of safety and liveness properties,

but usually applied on design, not on the implementation.

Part 3: Benchmarking and Evaluation
– Measures performance properties of systems (latency,

throughput, resource utilization, energy consumption, etc…)
under realistic or stress load.

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 1: Testing

5

Slides inspired from: https://www.youtube.com/watch?v=hQSCnJ3kj2M.

https://www.youtube.com/watch?v=hQSCnJ3kj2M.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Testing Pyramid
• Unit tests:

– Basis to catch most bugs pre-production
– Test every function, module, microservice separately
– Stub all other components (mocks, contract tests)
– Shoot for >95% line coverage

• Integration:
– Test multiple integrated components, still with

some stubbing for external deps
– Often rely on growing list of scenarios

• End-to-end:
– Often ran on deployment in production(-like)

environment, often with mirrored traffic

Unit tests

Integration

End-
to-end

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Testing in Production

• Pre-production testing is critical, but insufficient
– Conditions can change dramatically in production
– Different combos of protocols/protocol versions, ongoing

migrations of dependencies, different workload patterns,
different configs, …

• But testing in production raises challenges, so it needs to be
done carefully and support in the code!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Types of Tests in Production

• End-to-end integration test cases
• Shadowing/traffic mirroring
• Canary deployments
• Chaos engineering
• Real user monitoring

Deploy

Release

Operate

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Risks of Testing in Production

• User impact
• State poisoning
• Traffic saturation
• Telemetry data skew
• Misfired alerts

The application needs to be
aware of (code for) tests being

performed in production

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Test Labeling

End user

Tests

• Test label is propagated across services per request
• Services and routing layer are aware of test label
• Supported by RPC tracing systems (e.g., OpenTelemetry)

https://opentelemetry.io/

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Fixing the Risks

• User impact
• State poisoning
• Traffic saturation
• Telemetry data skew
• Misfired alerts

Test before releasing
Separate writes to datastores
Implement QoS based on test label
Mark telemetry with test label
Exclude test telemetry from alerts

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: OpenTelemetry

func TestIntegration(t *testing.T) {
 tracer := global.TraceProvider().GetTracer(“”)
 ctx := distributedcontext.NewContext(context.Background(), key.String(“tenancy”, “test”))
 ctx, span := tracer.Start(ctx, t.Name())
 defer span.End()

 // … test case
}

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Managing State
service

service

datastore

datastore

End user

Tests

Single-tenant services
Single-tenant datastores

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Managing State
service

service

datastore

datastore

End user

Tests

Single-tenant services
Single-tenant datastores

datastore

datastore

End user

Tests

Multi-tenant service
Single-tenant datastores

service

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Managing State
service

service

datastore

datastore

End user

Tests

Single-tenant services
Single-tenant datastores

datastore

datastore

End user

Tests

Multi-tenant service
Single-tenant datastores

service

End user

Tests

Multi-tenant service
Multi-tenant datastore

service datastore

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Managing State
service

service

datastore

datastore

End user

Tests

Single-tenant services
Single-tenant datastores

datastore

datastore

End user

Tests

Multi-tenant service
Single-tenant datastores

service

End user

Tests

Multi-tenant service
Multi-tenant datastore

service datastore

End user

Tests

Multi-tenant service
Multi-tenant datastoreservice datastore

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Managing Telemetry Data

17

With OpenTelemetry:

// Init measure
meter := global.MeterProvider().GetMeter(“”)
tenancyKey := key.New(“tenancy“)
measure := meter.NewInt64Measure(“myMeasure”, metric.WithKeys(tenancyKey))

// Extract tenancy from distributed context
var labels []core.KeyValue
if tenancyValue, ok := distributedcontext.FromContext(ctx).Value(“tenancy”); ok {
 labels = append(labels, core.KeyValue{Key: tenancyKey, Value: tenancyValue})
}

// Attach labels to measurement
measure.Record(ctx, 123, meter.Labels(labels…))

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Chaos Engineering
• Principles:

– Aggressively experiment on a system to build confidence in the system’s
capability to withstand turbulent conditions in production.

– Start by defining ‘steady state’ as some measurable output of a system that
indicates normal behavior.

– Hypothesize that this steady state will continue in both the control group and
the experimental group.

– Introduce variables that reflect real world events (like servers that crash, hard
drives that malfunction, network connections that are severed, datacenters
that go down (!), etc.).

– Try to disprove the hypothesis by looking for a difference in steady state
between the control group and the experimental group.

• Neflix has good tools and a book about this. E.g.: Chaos Monkey.
18

https://principlesofchaos.org/
https://github.com/Netflix/chaosmonkey

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

More Testing Resources

A good index of testing frameworks, practices, and
research can be found here:
https://github.com/asatarin/testing-distributed-systems

19

https://github.com/asatarin/testing-distributed-systems

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 2: Model Checking

20

Slides inspired from: https://www.hillelwayne.com/talks/distributed-systems-tlaplus/

https://www.hillelwayne.com/talks/distributed-systems-tlaplus/

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Model Checking: Topics

• Motivation
• TLA+ Examples

21

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Model Checking: Topics

• Motivation
• TLA+ Examples

22

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

DS Testing is HARD

• What does 95% line coverage in unit tests tell you?
• Often, failures are non-deterministic

– You run multiple times, but what if not enough times?

• Reasons DS testing is hard:
– Challenge 1: Concurrency
– Challenge 2: Non-determinism (including due to failures)

23

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Testing Challenge 1: Concurrency

24

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

global x = 1

process 1 process 2
x = x+1 x = x*2

25

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

State & Behavior Spaces

26

x = 1
I I

x = 2
I D

x = 2
D I

x = 4
D D

x = 3
D D

States
(5 here)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

27

x = 1
I I

x = 2
I D

x = 2
D I

x = 4
D D

x = 3
D D

Behavior, a.k.a.,
history or
execution
(2 here)

State & Behavior Spaces

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Small Increase in Concurrency ⇒
Large Increase in State Space

global x = 1

process 1 process 2
local tmp = x local tmp = x
x = tmp+1 x = tmp*2

28

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

State/Behavior Space

29

13 states
6 behaviors

(from that small
amount of added
concurrency!)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

State Space for Example

30

n = num processes
m = num steps per process

Number of states:
 m n * (m n)! / m!n

Thus, adding one more process means we’d have 540
states, an order of magnitude increase!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

31

State space for alternating bit protocol

Example state space visualization taken from here (more protocols available)

https://en.wikipedia.org/wiki/Alternating_bit_protocol
https://prob.hhu.de/w/index.php?title=State_space_visualization_examples#RushHour

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Testing Challenge 2: Non-Determinism

32

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Previous Example with Failures

33

global x = 1

process 1 process 2
local tmp = x local tmp = x

either either
 x = tmp+1 x = tmp*2
or or
 crash crash

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Another Example
(deterministic for now)

34

x = 0

while true:
 if x < 6:
 x = x + 1

while true:
 if x > 0:
 x = x - 1

Q: How many states and behaviors?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

35

7 states
14 distinct behaviors

Another Example
(deterministic for now)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

36

x = 0

while true:
 if x < 6:
 x = x + 1
 OR
 if x < 5:
 x = x + 2

while true:
 if x > 0:
 x = x - 1

Add a Little Non-Determinism

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

37

A Little Non-Determinism ⇒
Large Increase in Behavior Space

● No new states
● But 5 new edges
● ~100 distinct behaviors, an

order of magnitude increase!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

38

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Both States and Behaviors Can be Invalid

39

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

40

Both States and Behaviors Can be Invalid

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

41

Both States and Behaviors Can be Invalid

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

42

Assume: bad state/behavior occurs 1 / 1,000,000,000 events.

If your system executes 100 events / second (it’s not much!)

Then, how long before system reaches a bad state/behavior?

Do We Need to Check All of Them?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Do Invalid States/Behaviors Matter?

43

1 / 1,000,000,000 events
* 100 events / second

3-4 per year !!

For bad events, such as crashes, corruptions, outages,
that’s a lot!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Solutions

44

● Better programming abstractions, interfaces, protocols.
● Examples:

- Type safe langs
- CAS
- Transactions
- Locks
- Semaphors
- CRDTs
- Paxos
- RAFT
- …

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Solutions

45

● Better programming abstractions, interfaces, protocols.
● Examples:

- Type safe langs
- CAS
- Transactions
- Locks
- Semaphors
- CRDTs
- Paxos
- RAFT
- …

These all reduce the space (by
half? a third?), but still too
difficult to reason about and
test large programs thoroughly.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Bigger Problem: Design Issues

• State/behavior explosions occur due to design, not
implementation (think “complexity”).

• Programming abstractions focus on implementation, not design.
– If a design has flaws, any implementation will have flaws.

• But how do we test designs?
– A lot of frameworks for specifying designs exist (e.g., UML,

pseudocode, whiteboard :)), but most aren’t testable.

46

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Formal Specification and
Model Checking

47

(Ideally before implementing your system:)
1. Write a specification of the system in a formal

specification language (think math).
2. Specify correctness properties as invariants on states

or behaviors.
3. Use a model checker to exhaustively check that

every state/behavior of the system, within a bounded
range of configurations, satisfies your invariants.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Model Checking: Topics

• Motivation
• TLA+ Examples

48

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TLA+ (Temporal Logic of Actions)

49

● Mathematical formalism for specifying asynchronous DSes.
○ Everything is expressed as logical formulas.

● Developed by Leslie Lamport: “Best way to describe things
precisely is with simple mathematics.”
○ E.g: \E x \in S : \A y \in S : y <= x

● Useful for eliminating fundamental design bugs, which are
hard to find and expensive to correct in code.
○ But also useful for other things, like understanding systems

better, comparing designs, … [Geambasu+08]

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TLA+ Suite

50

● TLA+, the formalism:
○ Adopts the state machine perspective of a DS.
○ Inherently assumes concurrency, non-determinism, and failures,

but you can specify constraints (called “fairness”).
○ Supports two types of properties:

■ Safety: Must hold for all states (e.g., at any state, at least
one server has the committed data).

■ Liveness: Must eventually must hold (e.g., eventually all
replicas have the committed data).

● TLC, the model checker:
○ Verifies that all states/behaviors satisfy the properties within a

bounded configuration space.

● PlusCal: imperative wrapper around TLA+ math.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

State Machine Spec
● “State” in TLA+ refers to the entire, global state of the specified DS.
● A DS specification consists of:

○ A set of potential initial states (Init)
○ Next-state relation (Next): The set of all the possible transitions

among pairs of states.
■ These are defined as logical formulas that may or may not

become true (“fire”) in any given state.
■ TLC will try them all in any given state. Those that “fire” will

be followed and may create new states.
○ Then, Spec == Init /\ []Next

● Properties are also specified as logical formulas, with two operators:
○ Safety: Spec ⇒ [](logical_formula) (for all states)
○ Liveness: Spec ⇒ <>(logical_formula) (eventually)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TLA+ Is Useful and USED!

52
See Lamport’s list of TLA+ industrial uses.

https://lamport.azurewebsites.net/tla/industrial-use.html

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Amazon’s Experience

Paper: “Why Amazon Chose TLA+” Chris Newcombe Amazon, Inc., 2014.
Talk: “The Evolution of Testing Methodology at AWS: From Status Quo to
Formal Methods with TLA+” Tim Rath, 2015.
“Why Amazon is using formal methods. Amazon builds many sophisticated
distributed systems that store and process data on behalf of our customers. In
order to safeguard that data we rely on the correctness of an ever-growing set
of algorithms for replication, consistency, concurrency-control, fault tolerance,
auto-scaling, and other coordination activities. Achieving correctness in these
areas is a major engineering challenge as these algorithms interact in complex
ways in order to achieve high-availability on cost-efficient infrastructure whilst
also coping with relentless rapid business-growth. We adopted formal methods
to help solve this problem.”

53

https://link.springer.com/content/pdf/10.1007/978-3-662-43652-3_3.pdf
https://www.infoq.com/presentations/aws-testing-tla/
https://www.infoq.com/presentations/aws-testing-tla/

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

54

Example Amazon Uses
(from talk)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example 1:
Basic Paxos in TLA+

https://github.com/neoschizomer/Paxos/blob/master/Paxos.tla
(look at code)

55

https://github.com/neoschizomer/Paxos/blob/master/Paxos.tla

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example 2:
Simple Protocol in PlusCal

https://www.hillelwayne.com/talks/distributed-systems-tlaplus/
(play video starting at minute 22)

56

https://www.hillelwayne.com/talks/distributed-systems-tlaplus/

