
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Cluster Scheduling

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

3

• We talked about cluster orchestration and Kubernetes.
• A key part of orchestration is scheduling (i.e., allocating compute

resources to jobs -- nodes to pods in K8s).
• Now we’ll talk about scheduling: a few common considerations,

algorithms, and scheduler architectures in several real,
open-source systems:

– Apache YARN
– Apache Mesos
– Google Borg

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

Part 1: Cluster scheduling overview
Part 2: Examples of real schedulers
Part 3: Scheduling algorithms

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 1: Overview

5

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Cluster Scheduling

• Scheduler (aka
dispatcher) accepts
incoming requests for
jobs and schedules
them to run on nodes in
the cluster.

• When to run and where
to run each job are
decisions made by the
scheduler according to
a scheduling policy. 6

scheduler

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Types of Workloads

• Interactive applications
– Submit short jobs whose response time must be short
– E.g.: web service, where a “job” is a single HTTP request
– Goal is to optimize for response time

• Batch applications
– Job is a long running computation
– Goal is to optimize for throughput

• Often both types of workloads share a cluster
– Typically, prioritize interactive over batch

7

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Scheduling in Interactive Applications

• Suppose you have a Web server deployment. How do you assign
user requests to the servers in your deployment?

• Architecture:
– N nodes: one node acts as load balancer (LB), the others are

replicas that constitute the server pool
– HTTP requests arrive into queue at LB, which schedules each

request onto a replica node
• How to decide where to run a given request? Scheduling policies:

least loaded, round robin, weighted round robin
• How do decide when to service a given request? Typically FIFO (first in

first out), but may prioritize users with established sessions
• Stateful services: LB at session level instead of per request8

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Scheduling Batch Jobs

• Example: SLURM (Simple Linux Utility for Resource Management)
• Runs on > 50% supercomputers
• Nodes partitioned into groups; each group has job queue
• Specify size, time limits, user groups for each queue
• Many policies available: FIFO, priority, gang scheduling

9

scheduler

• Batch jobs are non-interactive jobs
– ML training, data processing jobs,

indexing, simulations
• Scheduler architecture as before:

users submit jobs to a queue,
scheduler schedules them onto
worker nodes

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 2: Examples of Real Schedulers

Apache YARN

10

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

YARN
(“Yet Another Resource Negotiator”)

11

YARN (cluster resource manager)

• Cluster manager
typically used with
Apache Hadoop

• Allocates resources to
jobs to nodes in
accordance a
scheduling policy:
– FIFO
– Capacity
– Fair

H
B

as
e

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

YARN Scheduling Policies

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 2: Examples of Real Schedulers

Apache Mesos

13

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

14

Apache Mesos
● Part of

Apache
Spark data
processing
stack

● Cluster
manager and
scheduler for
multiple
frameworks

Spark Technology Stack

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mesos Overview

15

● Motivation: A cluster typically runs multiple frameworks -- Hadoop, Spark, MPI -- each
with its scheduler. How should the cluster manage these frameworks?

- One option: Statically partition cluster, each managed by a scheduler. Problem:
fragments the cluster and may lead to under-utilization.

● Mesos: fine-grained server sharing between frameworks
- Two-level approach: allocate resources to frameworks, framework allocates

resources to jobs

● Resource Offers: bundle of resources offered to framework
- Framework can accept or reject offer
- Higher-level policy (e.g., fair share) governs allocation; resource offers used to offer

resources
- Framework-specific scheduling policy allocates to jobs

- Framework can not ask for resources; only accept/reject resource offers

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mesos Architecture

Four components: coordinator, Mesos worker, framework
scheduler, executor on server nodes

16

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

17

• Step 1: worker node (4 core,
4GB) becomes idle, reports to
coordinator

• Step 2: Coordinator invokes
policy, decides to allocate to
Framework 1. Sends resource
offer

• Step 3: Framework accepts,
scheduler assigns job 1 (2CPU,
1GB) and job 2 (1CPU, 2GB)

• Step 4: Coordinator sends job to
executor on node

• Unused resources (1CPU, 1GB):
new offer

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 2: Examples of Real Schedulers

Google Borg

18

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Google Borg

- Scheduling at very large scales: run hundreds of thousands of
concurrent jobs onto tens of thousands of server

- Borg’s ideas later influenced kubernetes
- Design Goals:

- Hide details of resource management and failures from apps
- Operate with high reliability (manages gmail, web search, ..)
- Scale to very large clusters

- Designed to run two classes: interactive and batch
 – Long running interactive jobs (prod job) given priority
 – Batch jobs (non-prod jobs) given lower priority
 – % of interactive and batch jobs will vary over time

19

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Borg Architecture
● Cell: group of machines in a cluster (~10K servers)
● Borg: matches jobs to cells

– jobs specify resource needs
 – Borg finds a cell/machine to run a job
 – job needs can change (e.g., ask for more)

● Use resource reservations (“alloc”)
 – alloc set: reservations across machines
– Schedule job onto alloc set

• Preemption: higher priority job can preempt a
lower priority job if there are insufficient resources

• Borg Master coordinator: replicated 5 times (paxos)
• Priority queue to schedule jobs: uses best-fit, worst-fit 20

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Kubernetes Scheduler

• Some ideas come from
Borg, but Kubernetes is
more extensible and
general
– “You can customize the

behavior of the
kube-scheduler by
writing a configuration
file” (kube-scheduler
documentation)

21

kube-scheduler documentation:

https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 3: Algorithms

22

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Design Considerations
1. Optimize for efficiency:

• Given fixed resources, run as many jobs as possible (or if
jobs have different “utilities,” get the highest global utility)

• It’s an instance of the bin packing problem (aka knapsack
problem), which is NP-hard in general, but there are greedy
approximations

2. Ensure fairness:
• Given fixed resources, ensure that all jobs/users get, on

average, an equal share of resources over time

Fairness and efficiency are often at odds, so choose one…
Utilization is often a secondary consideration alongside 1 or 2.

23

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 3: Algorithms

Fairness-Oriented

24

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Max-min Fairness

• Maximizes the minimum allocation received by a job (or a user).
• Single-resource algorithm:

– Sort the job queue based on the share of the resource the jobs (or
their users) have gotten so far.

– Each time, you allocate a job/user at most its “fair share” of the
resource (say CPU):

fs = R / N
where R is the capacity of the resource (e.g., number of CPU

cores) and N is the number of jobs in the queue (or of users if we’re
doing max-min fairness at user level).

25

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Properties
• Sharing incentive: Each user is better off sharing the cluster than

exclusively using her own partition of the cluster.
– Consider a cluster with identical nodes and N users. Then a user should not be

able to allocate more jobs in a cluster partition consisting of 1/N of all resources.

• Strategy proofness: Users do not benefit by lying about their
resource demands. This provides incentive compatibility.

• Envy-freeness: A user will not prefer the allocation of another user.
This embodies fairness.

• Pareto efficiency: It is not possible to increase the allocation of a
user without decreasing the allocation of at least another user. This
maximizes utilization subject to satisfying the other properties.

26 (defs from DRF paper (see acks))

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Multi-Resource Algorithm: DRF
• Max-min fairness described so far refers to only one resource.

• In reality, jobs request multiple resources, such as CPUs, memory,
GPU, etc., and those demands are usually heterogeneous.
– E.g., some jobs may request more CPU, others more memory; some

request only CPUs and no GPUs, others request a combo; etc.

• DRF (Dominant Resource Fairness): Algo to ensure max-min
fairness across heterogeneous resource demands
– E.g.: if user A runs CPU-heavy tasks and user B runs memory-heavy

tasks, DRF attempts to equalize user A’s share of CPUs with user B’s
share of memory.

27

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

DRF Algorithm

28 (from DRF paper (see acks))

dominant share =
maximum share of
any resource that
has been granted
to the user so far

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

DRF Properties

• DRF enjoys the same game-theoretical properties of
max-min fairness:
– Sharing incentive
– Strategy proofness
– Envy-freeness
– Pareto efficiency

• Thanks to these properties, it also ensures performance
isolation among tasks/users.

• YARN includes it as one of its three options, and it’s enabled
by default in Cloudera’s Hadoop stack.

29

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Part 3: Algorithms

Efficiency-Oriented

30

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Bin Packing

• Given fixed resources, run as many jobs as possible (or if jobs
have different “utilities” or “weights,” get the highest total weight)

• It’s an instance of the bin packing problem (aka knapsack problem),
which is NP-hard in general, expressed as the following ILP:

31

xi = binary var (allocate or
not job i)
wi = weight/utility of job i
di,j = demand of task i for
resource j
rj = capacity of resource j

rj

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Greedy Approximations
- Algo structure:

- Sort jobs according to a task efficiency metric (ei)
- Allocate tasks in order, starting from the highest efficiency

metric, until the algo cannot pack any more tasks
- Multiple definitions of ei

• For a single resource: ei = wi/di (weight to demand ratio)
• For multi-resource: ei = wi/(Σj=1..mdi,j/rj)
• Others are possible, which underscore further the “scarcity” of

a particular resource. No great agreement on best one,
different schedulers make different choices

32

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

The lecture slides were inspired by the followings:
- Cluster scheduling lecture by Prof. Prashant Shenoy

from UMass-Amherst

- YARN scheduler overview by Bilal Maqsood and documentation
- Kubernetes reference on scheduling
- DRF paper: Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy

Konwinski, Scott Shenker, Ion Stoica. “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types,” NSDI
2011.

Acknowledgements

33

https://lass.cs.umass.edu/~shenoy/courses/spring22/lectures/Lec06.pdf
https://towardsdatascience.com/schedulers-in-yarn-concepts-to-configurations-5dd7ced6c214
https://bilalmaqsood.medium.com/?source=post_page-----5dd7ced6c214--------------------------------
https://hadoop.apache.org/docs/r2.9.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://kubernetes.io/docs/reference/scheduling/config/
https://cs.stanford.edu/~matei/papers/2011/nsdi_drf.pdf

