
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Cluster Scheduling
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Context
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• We talked about cluster orchestration and Kubernetes.
• A key part of orchestration is scheduling (i.e., allocating compute 

resources to jobs -- nodes to pods in K8s).
• Now we’ll talk about scheduling: a few common considerations, 

algorithms, and scheduler architectures in several real, 
open-source systems:

– Apache YARN
– Apache Mesos
– Google Borg
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Outline

Part 1: Cluster scheduling overview
Part 2: Examples of real schedulers
Part 3: Scheduling algorithms
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Part 1: Overview
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Cluster Scheduling

• Scheduler (aka 
dispatcher) accepts 
incoming requests for 
jobs and schedules 
them to run on nodes in 
the cluster.

• When to run and where 
to run each job are 
decisions made by the 
scheduler according to 
a scheduling policy. 6

scheduler



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Types of Workloads

• Interactive applications
– Submit short jobs whose response time must be short
– E.g.: web service, where a “job” is a single HTTP request
– Goal is to optimize for response time

• Batch applications
– Job is a long running computation
– Goal is to optimize for throughput

• Often both types of workloads share a cluster
– Typically, prioritize interactive over batch

7
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Scheduling in Interactive Applications

• Suppose you have a Web server deployment.  How do you assign 
user requests to the servers in your deployment?

• Architecture:
– N nodes: one node acts as load balancer (LB), the others are 

replicas that constitute the server pool
– HTTP requests arrive into queue at LB, which schedules each 

request onto a replica node
• How to decide where to run a given request? Scheduling policies: 

least loaded, round robin, weighted round robin
• How do decide when to service a given request?  Typically FIFO (first in 

first out), but may prioritize users with established sessions
• Stateful services: LB at session level instead of per request8
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Scheduling Batch Jobs

• Example: SLURM (Simple Linux Utility for Resource Management)
• Runs on > 50% supercomputers
• Nodes partitioned into groups; each group has job queue
• Specify size, time limits, user groups for each queue
• Many policies available: FIFO, priority, gang scheduling

9

scheduler

• Batch jobs are non-interactive jobs
– ML training, data processing jobs, 

indexing, simulations
• Scheduler architecture as before: 

users submit jobs to a queue, 
scheduler schedules them onto 
worker nodes
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Part 2: Examples of Real Schedulers

Apache YARN

10



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

YARN
(“Yet Another Resource Negotiator”)
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YARN (cluster resource manager)

• Cluster manager 
typically used with 
Apache Hadoop

• Allocates resources to 
jobs to nodes in 
accordance a 
scheduling policy:
– FIFO
– Capacity
– Fair

H
B
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e
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YARN Scheduling Policies
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Part 2: Examples of Real Schedulers

Apache Mesos
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Apache Mesos
● Part of 

Apache 
Spark data 
processing 
stack

● Cluster 
manager and 
scheduler for 
multiple 
frameworks

Spark Technology Stack
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Mesos Overview
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● Motivation: A cluster typically runs multiple frameworks -- Hadoop, Spark, MPI -- each 
with its scheduler.  How should the cluster manage these frameworks?

- One option: Statically partition cluster, each managed by a scheduler.  Problem: 
fragments the cluster and may lead to under-utilization.

● Mesos: fine-grained server sharing between frameworks
- Two-level approach: allocate resources to frameworks, framework allocates 

resources to jobs

● Resource Offers: bundle of resources offered to framework
- Framework can accept or reject offer
- Higher-level policy (e.g., fair share) governs allocation; resource offers used to offer 

resources
- Framework-specific scheduling policy allocates to jobs

- Framework can not ask for resources; only accept/reject resource offers
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Mesos Architecture

Four components: coordinator, Mesos worker, framework 
scheduler, executor on server nodes

16



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
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• Step 1: worker node (4 core, 
4GB) becomes idle, reports to 
coordinator

• Step 2: Coordinator invokes 
policy, decides to allocate to 
Framework 1. Sends resource 
offer

• Step 3: Framework accepts, 
scheduler assigns job 1 (2CPU, 
1GB) and job 2 (1CPU, 2GB)

• Step 4: Coordinator sends job to 
executor on node

• Unused resources (1CPU, 1GB): 
new offer
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Part 2: Examples of Real Schedulers

Google Borg
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Google Borg

- Scheduling at very large scales: run hundreds of thousands of 
concurrent jobs onto tens of thousands of server

- Borg’s ideas later influenced kubernetes
- Design Goals:

- Hide details of resource management and failures from apps
- Operate with high reliability (manages gmail, web search, ..)
- Scale to very large clusters

- Designed to run two classes: interactive and batch
 – Long running interactive jobs (prod job) given priority
 – Batch jobs (non-prod jobs) given lower priority
 – % of interactive and batch jobs will vary over time 

19
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Borg Architecture
● Cell: group of machines in a cluster (~10K servers)
● Borg: matches jobs to cells

– jobs specify resource needs
 – Borg finds a cell/machine to run a job
 – job needs can change (e.g., ask for more) 

● Use resource reservations (“alloc”)
 – alloc set: reservations across machines
– Schedule job onto alloc set

• Preemption: higher priority job can preempt a       
lower priority job if there are insufficient resources

• Borg Master coordinator: replicated 5 times (paxos)
• Priority queue to schedule jobs: uses best-fit, worst-fit 20
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Kubernetes Scheduler

• Some ideas come from 
Borg, but Kubernetes is 
more extensible and 
general
– “You can customize the 

behavior of the 
kube-scheduler by 
writing a configuration 
file” (kube-scheduler 
documentation)

21

kube-scheduler documentation:

https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/
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Part 3: Algorithms

22
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Design Considerations
1. Optimize for efficiency:

• Given fixed resources, run as many jobs as possible (or if 
jobs have different “utilities,” get the highest global utility)

• It’s an instance of the bin packing problem (aka knapsack 
problem), which is NP-hard in general, but there are greedy 
approximations

2. Ensure fairness:
• Given fixed resources, ensure that all jobs/users get, on 

average, an equal share of resources over time

Fairness and efficiency are often at odds, so choose one…
Utilization is often a secondary consideration alongside 1 or 2.

23
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Part 3: Algorithms

Fairness-Oriented

24
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Max-min Fairness

• Maximizes the minimum allocation received by a job (or a user).
• Single-resource algorithm:

– Sort the job queue based on the share of the resource the jobs (or 
their users) have gotten so far.  

– Each time, you allocate a job/user at most its “fair share” of the 
resource (say CPU):

fs = R / N
where R is the capacity of the resource (e.g., number of CPU 

cores) and N is the number of jobs in the queue (or of users if we’re 
doing max-min fairness at user level).

25
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Properties
• Sharing incentive: Each user is better off sharing the cluster than 

exclusively using her own partition of the cluster.
– Consider a cluster with identical nodes and N users. Then a user should not be 

able to allocate more jobs in a cluster partition consisting of 1/N of all resources.

• Strategy proofness: Users do not benefit by lying about their 
resource demands. This provides incentive compatibility.

• Envy-freeness: A user will not prefer the allocation of another user. 
This embodies fairness.

• Pareto efficiency: It is not possible to increase the allocation of a 
user without decreasing the allocation of at least another user. This 
maximizes utilization subject to satisfying the other properties.

26 (defs from DRF paper (see acks))
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Multi-Resource Algorithm: DRF
• Max-min fairness described so far refers to only one resource.

• In reality, jobs request multiple resources, such as CPUs, memory, 
GPU, etc., and those demands are usually heterogeneous.
– E.g., some jobs may request more CPU, others more memory; some 

request only CPUs and no GPUs, others request a combo; etc.

• DRF (Dominant Resource Fairness): Algo to ensure max-min 
fairness across heterogeneous resource demands
– E.g.: if user A runs CPU-heavy tasks and user B runs memory-heavy 

tasks, DRF attempts to equalize user A’s share of CPUs with user B’s 
share of memory.

27
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DRF Algorithm

28 (from DRF paper (see acks))

dominant share = 
maximum share of 
any resource that 
has been granted 
to the user so far
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DRF Properties

• DRF enjoys the same game-theoretical properties of  
max-min fairness:
– Sharing incentive
– Strategy proofness
– Envy-freeness
– Pareto efficiency

• Thanks to these properties, it also ensures performance 
isolation among tasks/users.

• YARN includes it as one of its three options, and it’s enabled 
by default in Cloudera’s Hadoop stack.

29
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Part 3: Algorithms

Efficiency-Oriented

30
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Bin Packing

• Given fixed resources, run as many jobs as possible (or if jobs 
have different “utilities” or “weights,” get the highest total weight)

• It’s an instance of the bin packing problem (aka knapsack problem), 
which is NP-hard in general, expressed as the following ILP:

31

xi = binary var (allocate or 
not job i)
wi = weight/utility of job i
di,j = demand of task i for 
resource j
rj = capacity of resource j

rj
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Greedy Approximations
- Algo structure:

- Sort jobs according to a task efficiency metric (ei)
- Allocate tasks in order, starting from the highest efficiency 

metric, until the algo cannot pack any more tasks
- Multiple definitions of ei

• For a single resource: ei = wi/di (weight to demand ratio)
• For multi-resource: ei = wi/(Σj=1..mdi,j/rj)
• Others are possible, which underscore further the “scarcity” of 

a particular resource.  No great agreement on best one, 
different schedulers make different choices

32
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The lecture slides were inspired by the followings:
- Cluster scheduling lecture by Prof. Prashant Shenoy

from UMass-Amherst

- YARN scheduler overview by Bilal Maqsood and documentation
- Kubernetes reference on scheduling
- DRF paper: Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy 

Konwinski, Scott Shenker, Ion Stoica. “Dominant Resource 
Fairness: Fair Allocation of Multiple Resource Types,” NSDI 
2011. 
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