Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu



Large-Scale Software
Systems Stacks



Lecture Theme

We talked a lot about storage in this class, plus a bit about
distributed computation. For storage, we focused on a
particular type of interface (transactional databases).

But there’s a vast range of infrastructural components
that are needed for building successful distributed
applications. Large companies and open-source
communities have such components available.

This lecture aims to provide an index of such components.
We won't give details about how these components are built,
but pointers to where you can find out more.

We'll also give pointers to valuable advice on skills and
patterns useful for building large-scale systems.



Acknowledgements

* Because the course lecture is so broad, there’s a lot to
acknowledge for the content provided here.

* Particularly important for these slides are two sources:

* A 2015 talk by Malte Schwarzkopf on software systems
stacks at large companies [1].

A couple of talks by Jeff Dean about experience and
advice from building some key infrastructure systems
at Google (original slides [2] and [3]).



“What It Takes to Build Google?”

Google

Google Search I' li



s IS -

GO\)SIC university of cambridge

Web Maps Images News Videos More ~ Search tools

About 349,000,000 results (0.90 seconds)

University of Cambridge /Drayton %, Girton S v,
www.cam.ac.uk/ v
The mission of the University of Cambridge is to contribute to society through the y i
> : 3 ¢ i A -Fen Ditton
pursuit of education, learning and research at the highest international levels of ...
4.5 Yk Kk 252 Google reviews - Write a review - Google+ page ! 4 d
e ke Canibridge Teversham
(e) The Old Schools, Trinity Ln, Cambridge CB2 1TN %.IXR,‘[EBR[S{IITDY(?E / ‘\
Y 01223 337733 aberton
Barton
am.ac.uk Q
. University of Cambridge  oretens
Job Opportunities Undergraduate Study y g
Assistant staff - Jobs - College jobs - Courses - International students - big

Research jobs - Academic - ... Applying - Colleges - Finance
Courses

Natural Sciences - Engineering -
Medicine - Computer Science

The Computer Laboratory
The Computer Laboratory offers an
MPhil programme in Advanced ...

Graduate Admissions
Course Directory - How Do | Apply? -
International Students - Fees

Colleges and departments
The University is a confederation of
Schools, Faculties ...

University of Cambridge cam.ac.uk - Facebook
https://lwww.facebook.com/cambridge.university ~

University of Cambridge, Cambridge, Cambridgeshire. 1270206 likes - 58598 talking
about this. Official Facebook page for the University of Cambridge...

University of Cambridge - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/University_of_Cambridge ~

Public university in Cambridge, England

The University of Cambridge is a collegiate public research university in
Cambridge, England. Founded in 1209, Cambridge is the second-oldest
university in the English-speaking world and the world's fourth-oldest
surviving university. Wikipedia

Address: The Old Schools, Trinity Ln, Cambridge CB2 1TN

Motto: Hinc lucem et pocula sacra

Acceptance rate: 20.8% (2013)

Color: Cambridge Blue

Founded: 1209, Cambridge

Enroliment: 19,938 (2014)

E8 Get updates about University of Cambridge



What happens here?

A
- N

Stalled [ 9.524 ms
Request sent | 0.506 ms
Waiting (TTFB) 125.827ms
Content Download = 3.016 ms

Explanation / 7505 ms
125.827 ms /

= 3.016 ms

139.605 ms




What happens in those 139ms?

Your Internet Go g Ie
computer \ . datacenter
‘eece| T 000e| $

Front-e ﬂ )6\ JJ]
er
B3 K I

Jaeddddaedd dddaddddd  ddaddadd




What we’ll chat about

1. Datacenter hardware

2. Cluster failures

3. Scalable & fault tolerant software stacks

a. Google
b. Facebook

c. Open source



w1 —

=
o b




b g

% :

e T’ 'Y ;,

m— el

A=
'.
3|
, ¥
&
-
¥
= |

-

R R e R e & L L L 1 T SO

- =

" TN T T o Y N A T AL AR !ﬁdiaﬂ‘diﬁni‘l)-\"v
’ . a3 y . - Vi ~ , =
P s . S [ 1 | ¥ a . - a ;

From Meta (as of 2022):
M) machines in total

10s) regions

O(1
O(
e (O(1000s) interdependent
services

e “‘Machine”
o no chassis

o DC battery
o mostly custom-made

e Network

o ToR switch
o multi-path core

A video surveying a Google

Datacenter (as of 2020) is here.

11


https://datacenterfrontier.com/inside-a-google-data-center-2020-version/

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures ~ (NB: Numbers are from 2007 Google study, but
~thousands of hard drive failures are most comprehensive in terms of class of
failures. Other papers measure specific types of
failure, such as this for disks and this for DRAM.)

Source: Jeff Dean

https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf, 2007.


https://research.google.com/archive/disk_failures.pdf
https://research.google/pubs/pub35162/

Dealing with Scale and Failures

1. Leverage infrastructure systems that solve portions of
your problem at scale and with fault-tolerance.

2. Follow engineering patterns for how to develop
scalable, fault tolerant systems.

3. Reason about the space of design and try make design
choices based on assessments of tradeoffs, either from
back-of-the-envelope or from basic prototype
evaluations.

Today: We’'ll talk about the kinds of infrastructure systems that are
often needed (and available) at companies or in the open-source
community (#1 above).

Refer to these slides [2] by Jeff Dean for DS design patterns and
tradeoff analysis advice (#2 and #3 above). We’ll only include here
one example back-of-the-envelope calculation. Note the final quiz may



Numbers Everyone Should Know

(NB: Numbers are outdated, keep searching for latest numbers online, e.q., [4])

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250, 000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 1.0, 000, 000 as
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf


https://colin-scott.github.io/personal_website/research/interactive_latency.html

15



16



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 1: Thumbnail Page Generation

Question: How long to generate the image
thumbnail page for an album of 30 pics
(256KB/thumbna|I)’?

Consider at least two designs for how the album
app might interact with the file system to retrieve
the thumbnails. Assume local application, no
network/distribution.

- Use “Numbers Everyone Should Know” (previous
slide) to give an order of magnitude estimation of
the runtime under each design.

give your assessment for runtime for each, and

identify whether there is a clear winner?

https://tinyurl.com/back-of-the-envelope-activity

- In your answer sheet, briefly describe your options,



Numbers Everyone Should Know

(NB: Numbers are outdated, keep searching for latest numbers online, e.q., [4])

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250, 000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 1.0, 000, 000 as
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf


https://colin-scott.github.io/personal_website/research/interactive_latency.html

Calculation 1: Thumbnail Page Generation

Design 1: Read serially, thumbnail 256K images on the fly

30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Design 2: Issue reads in parallel:
10 ms/seek + 256K read / 30 MB/s = 18 ms

(Assumes full parallelism, so multiple disks each with multiple heads. If all in one
disk with (say) 5 heads, latency is more like 110ms.)

Lots of variations:
— caching (single images? whole sets of thumbnails?)
— pre-computing thumbnails

Back of the envelope helps identify most promising...

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2: Quicksort 1GB Numbers

algorithm quicksort(A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p - 1)
quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
pivot := A[hi]
i := 1lo
for j := lo to hi do
if A[]j] < pivot then
swap A[i] with A[]]

i:=1+1
swap A[i] with A[hi]
return i
quicksort(A, 0, length(A) - 1).

Mispredictions: 2*32 mispredivtios * 5ns = ~21 seconds
Memory component: 28GB @ 4GB/s ~= 7 seconds

30 seconds for sorting a 1GB-worth of numbers

Question: How long to quicksort 1GB’s
worth of 4-byte numbers?

Assume all numbers are in RAM.
Think about how many numbers that would
mean. — 2728 numbers =n
Remind yourselves of the algorithm and
think of what the most expensive operations
are likely to be. — 1) branch mispredictions
(due to comparisons); 2) memory accesses
For each expensive operation:
- Approximate how many such ops on
average.
1) # comparisons: nlog n =
2728*28 ~= 2733. Half mispredict:
2732 branch mispredictions
« 2) amount of memory accessed:
28 * 1GB = 28 GB RAM accessed

1 lea “Nhiimhoare Eviemv/anoe QhAatild WnAvw/”



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2: Quicksort 1GB Numbers

algorithm quicksort(A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p - 1)
quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is

pivot := A[hi]
i := 1lo
for j := lo to hi do

if A[]j] < pivot then
swap A[i] with A[]]
i:=1+1
swap A[i] with A[hi]
return i

quicksort(A, 0, length(A) - 1).

Question: How long to quicksort 1GB’s
worth of 4-byte numbers?

Assume all numbers are in RAM.

Think about how many numbers that would
mean.

Remind yourselves of the algorithm and
think of what the most expensive operations
are likely to be.

For each expensive operation:

- Approximate how many such ops on
average.

- Use “Numbers Everyone Should Know”
to approximate the total cost of those
ops.

Then add things up and put your order of
magnitude estimation in your answer sheet.

21



Numbers Everyone Should Know

(NB: Numbers are outdated, keep searching for latest numbers online, e.q., [4])

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250, 000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 1.0, 000, 000 as
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf


https://colin-scott.github.io/personal_website/research/interactive_latency.html

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2:
Quicksort 1GB
Numbers

algorithm quicksort(A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p - 1)
quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is

pivot := A[hi]
i := 1lo
for j := lo to hi do

if A[]j] < pivot then
swap A[i] with A[]]
i:=1+1
swap A[i] with A[hi]
return i

quicksort(A, 0, length(A) - 1).

Mispredictions = 2232 misp * 5 ns
=~ 21 sec

Memory: 28 GB @ 4GB/s =~ 7 sec

Question: How long to quicksort 1 GB
of 4 byte numbers?

Assume all numbers are in RAM.

Think about how many numbers that would
mean. — 228 numbers

Remind yourselves of the algorithm and think
of what the most expensive operations are
likely to be. — comparisons, memory reads
For each heavy operation:

- Approximate how many such ops on
average. — comparisons: log(2"28)
passes over 2228 numbers, or 233
comparisons. Half mispredict, so 2*32
mispredictions.

— amount of memory read:
2730 bytes for 28 passes.

- Use “Numbers Everyone Should Know” to
approximate the total cost of those ops.
Then add things up and put your order of

magnitude estimation in your answer sheet.



Calculation 2: Quicksort 1GB Numbers

Comparisons: lots of unpredictable branches

log(2728) passes over 228 numbers = ~2*33 comparisons
~1/2 will mispredict, so 232 mispredicts * 5 ns/mispredict = 21 secs

Memory bandwidth: mostly sequential streaming
230 bytes * 28 passes = 28 GB. Memory BW is ~4 GB/s, so ~7 secs

So, it should take ~30 seconds to sort 1 GB on one CPU

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf



Software Systems Stack

Transparent distributed systems

2 |l o
C 3
o 2| =
XX £ i -
9 O
5% ©
e =2
7
2 |l o
C 3
o8| =
XX £ i -
9 O
5% ©
ce =2
7
2 |l o
C 3
o 2| =
XX £ i -
9 O
5% ©
e =2
7

25



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]

B o e e e o et et ] ot e el s1 query Ul & columnar store
data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] _

across-DC ACID database cross-DC multi-version DB A A columnar database
|

\ BigTable [CDG*06]

row-consistent multi-dimensional sparse map,, <

|
v GFS/Colossus [GGLO03] Y

distributed block store and file system

Dapper [SBB*10]

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

>l
-~

<>

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015 (to appear).



Example Infrastructure System:
Kubernetes Cluster Orchestrator

27



Kubernetes (K8s)

https://kubernetes.io/

e Open-source system for automating
deployment, scaling, and management
of containerized applications.

e Groups containers that make up an
application into logical units for easy
management, scaling, and discovery.

e Builds upon 15 years of experience of
running production workloads at
Google, combined with best-of-breed
ideas and practices from the
community.

28


https://kubernetes.io/
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444

Background: Containers

Virtual Machines Containers

The old way: Applications on host The new way: Deploy containers

App App

Libraries Libraries

App App

Libraries
Libraries (K& ES

Heavyweight, non-portable Small and fast, portable
Relies on OS package manager Uses OS-level virtualization

source: kubernetes.io



Google’s been

Background: Containers running this

way for years!
>2B containers

Virtual Machines Containers launch per
The old way: Applications on host The new way: Deploy containers week (201 9
source)!

App App

Libraries Libraries

\&docker

Libraries Libraries G mall,

App App

Libraries

Search,
T Maps,
Docs,
Heavyweight, non-portable Small and fast, portable
Relies on OS package manager Uses OS-level virtualization

source: kubernetes.io


https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

Key concepts

e KB8s runs applicationsin a
cluster of nodes.

master

cluster

node
node

node




Key concepts

e KB8s runs applicationsin a
cluster of nodes.

e Nodes abstract out
computing resources: can
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, ...

.ya
ml

cluster

node

CPU,

RAM

node spec

(admin)



Key concepts

e KB8s runs applicationsin a
cluster of nodes.

e Nodes abstract out
computing resources: can
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, ...

e Applications are called
pods and consist of one or
more containers, which
the developer specifies in
a .yaml file to k8s master.

(develope

pod

template
|

r)

.ya

cluster

node

CPU,
RAM

ml
.ya
|

node spec

(admin)




defines desired

Key concepts (developer) | exec conditions

pod (e.g., hw needs,
template : replication, ...)

e KB8s runs applicationsin a {

cluster of nodes. W cluster
e Nodes abstract out node |cpPu.

e Applications are called
pods and consist of one or
more containers, which

mi
computing resources: can A
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, ...
mi
\
|

the developer specifies in

a .yaml file to k8s master. node spec
(admin)



defines desired

K8s main functions (developer) . ec conditions

e Based on pod
templates, selects
suitable nodes and
iInstantiates pods on
them for execution.

e C(Continuously does that
to ensure that, despite
failures, the desired
execution conditions for
all pods are met.

pod (e.g., hw needs,
template : replication, ...)

cluster
ml
y nOde CPU,

RAM

[/

.ya
ml
‘ (4

node spec
(admin)

35



Many more K8s functions

(from https://kubernetes.io/)

Automated rollouts and rollbacks
Service discovery and load balancing
Storage orchestration

Self-healing

Automatic scheduling (bin packing)
Secret and configuration management

Batch execution

Horizontal auto-scaling

Designed for extensibility

36


https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/#how-a-replicaset-works
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/

Many more K8s functions

(from https://kubernetes.io/)

EVEN MORE

® Automated rollouts and rollbacks .

| functions have
® Service discovery and load balancing been built outside
® Storage orchestration of K8s through its

)
® Self-healing extension by third
® Automatic scheduling (bin packing) parties,
® Secret and configuration management |/ demonstrating the
® Batch execution value of extensible
® Horizontal auto-scaling design for infra
i et systems!

® Designed for extensibility y



https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/#how-a-replicaset-works
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/

K8s outline

e Examples
o Hello World

o Busybox
o Nginx

e System architecture (how it works)

e Extensibility
o Argo workflows
o Kubeflow pipelines
o Ray on Kubernetes

38


https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Example: Hello World

apiVersion: extensions/vl1betal

kind: Deployment

metadata: p—
name: hello-world - )Pod

spec: / )~
replicas: 1

template: Docker
metadata: ".é
labels: Image

app: hello-world
spec:
containers:
- name: hello-world-server
image: gcr.io/megangcp/helloworld:v0.0.1
ports:
- containerPort: 8086 Slide credit _,



https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

Example: Hello World (cont.)

apiVersion: vi
kind: Service
metadata:

name: helloworld
spec:

selector:

app: hello-world
ports:
- name: http

protocol: TCP =~ Allow g

port: 80 = ¢ s
targetPort: 8086 traffic in

type: LoadBalancer

Slide credit ,,



https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

Example: Hello World (cont.)

kubectl apply -f deployment.yaml

deployment .extensions/hello-world created

Slide credit ,,



https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

Example: Hello World (cont.)

After a while...

kubectl get pods

NAME READY  STATUS RESTARTS
hello-world-84c646556b-kn59b 1/1 Running 0

kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP
helloworld LoadBalancer 10.51.246.3 35.188.110.209

Slide credit ,,



https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

Example: Hello World (cont.)

After a while...

curl http://35.188.110.269

Hello world!

Slide credit ,,



https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

K8s outline

e Examples
o Hello World

o Busybox (from doc)
o Nginx (from doc)

e System architecture (how it works)

e Extensibility
o Argo workflows
o Kubeflow pipelines
o Ray on Kubernetes

44


https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

System architecture

API server
Cloud
provi der Cloud controller
AP manager @
(optional) c-C-m

Functionality detailed in: docs. RG describes the core
aspects of the design.

45


https://kubernetes.io/docs/concepts/overview/components/

K8s outline

e Examples
o Hello World

o Busybox (from doc)
o Nginx (from doc)

e System architecture (how it works)

e Extensibility (from docs)

o Argo workflows: overview, steps example, artifact
passing example, dag example

o Kubeflow pipelines: example

o Ray on Kubernetes: docs

46


https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://argoproj.github.io/argo-workflows/architecture/#argo-workflow-overview
https://github.com/argoproj/argo-workflows/blob/main/examples/hello-world.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/artifact-passing.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/artifact-passing.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/dag-diamond.yaml
https://v0-7.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://docs.ray.io/en/latest/cluster/kubernetes/index.html

THE FOLLOWING SLIDES IN THIS
PRESENTATION ARE NOT SUBJECT
FOR THE EXAM.

47



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]
4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]
A parallel batch processing incremental processing | | PowerDrill [HBB*12]
] N S . ;A S :
ditis stovage query Ul & co[un‘mar store
MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] )
across-DC ACID database cross-DC multi-version DB A A columnar database
| Y R T R T R e S i R i e e
Y BigTable [CDG*06] ) ‘[ S| Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy, < F E E«o pervasive tracing
| I E
v GFS/Colossus [GGLO03] ¥ v 8l 2 CPI’ [ZTH*13]
distributed block store and file system E § interference mitigation A

coordination & cluster management

Chubby [Bur(6] <

locking and coordination

Borg [VPK*15] and Omega [SKA*13] v

cluster manager and job scheduler

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015 (to appear).

48



GFS/Colossus

e Bulk data block storage system

@)

O
O
O

Optimized for large files (GB-size)

Supports small files, but not common case

Read, write, record-append modes

Record appends are the only one that gives clean
semantics: atomic append at least once.

e Colossus = GFSv2, adds some improvements

O
O
O

e.g., Reed-Solomon-based erasure coding
better support for latency-sensitive applications
sharded meta-data layer, rather than single master

49



GFS/Colossus: architecture

Application 2 3o IR -

L (file name, chunk index) _ GFS master - ffoo/bar
GFS client | File namespace !-’ chunk 2ef0
(chunk handle, J.‘
chunk locations) K

/""

Instructions to chunkserver

Chunkserver state
(chunk handle, byte range)

GFS chunkserver GEFS chunkserver

chunk data

Linux file system Linux file system

Bl - DO -

s  Data messages

—- Control messages



Read Protocol

_Application
(1) N
' _,-f‘ {
— HRE,J
(file name, byte range) (file name,

chunk index)

GFS Client )

Cache (chunk handle,
replica locations)

N
( |
3




Read Protocol

Application

!| (data from file)

GFS Client

4 4“\
! |
I\\_ -‘jl

(chunk—handle,

byte range) -

1" (data from file)

Chunk Server

Chunk Server

Chunk Server




Write Protocol

__Application
P
L1 ) N
\_/ L _ijl
(file name, data) (file name,
chunk index)
Master
GFS Client
(chunk handle,

primary and
secondary replica
locations)




Write Protocol

Primary
Chunk
Bugier
Application i
Secondary
Chunk
- BLTI'
GFS Client Secondary
at ;
% Chunk
N [T Buffer
|'/- \'l
'\f‘,/

Primary enforces one order across all writes to a file.
Thus, block writes are consistent but undefined in GFS.



Record Append Protocol

® The client specifies only the data, not the file offset

— File offset is chosen by the primary
— Why do they have this?



Record Append Protocol

® The client specifies only the data, not the file offset

— File offset is chosen by the primary
— Why do they have this?

® To provide meaningful semantic: at least once atomically

— Because FS is not constrained Re: where to place data, it can
get atomicity without sacrificing concurrency

® Rough mechanism:

— If record fits in chunk, primary chooses the offset and
communicates it to all replicas 0 offset is arbitrary

— If record doesn't fit in chunk, the chunk is padded and client
gets failure U file may have blank spaces

— If a record append fails at any replica, the client retries the



Detailed algo

Application originates record append request.
2. GFS client translates request and sends it to master.

3. Master responds with chunk handle and (primary +
secondary) replica locations.

4. Client pushes write data to all locations.
5. Primary checks if record fits in specified chunk.

6. If record does not fit, then:

* The primary pads the chunk, tells secondaries to do the same, and
informs the client.

* Client then retries the append with the next chunk.

/. If record fits, then the primary:
* appends the record at some offset in chunk,
* tells secondaries to do the same (specifies offset),
° receives responses from secondaries,

L 'l 'l ~



Implications of weak semantics

* Relying on appends rather on overwrites

* Writing self-validating records
— Checksums to detect and remove padding

* Self-identifying records
— Unique ldentifiers to identify and discard duplicates

* Hence, applications need to adapt to GFS and be
aware of its inconsistent semantics

® BUT: You can implement a (transaction) log replication
protocol on it, so it's a useful building block toward a
stronger-semantic system.



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]

B o e e e o et et ] ot e el s1 query Ul & columnar store
data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] _

Across-DC ACID database cross-DC multi-version DB A A columnar database
| 4 e o o o o e o o o
v BigTable [CDG*06] ) ‘[ Dapper [SBB*10]

4

Y

-~

row-consistent multi-dimensional sparse mapy, < pervasive tracing

CPI? [ZTH*13]

interference mitigation |

i
v GFS/Colossus [GGL03] ¥

distributed block store and file system

>

coordination & cluster management
Chubby [Bur06] < Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 59
computing”, PhD thesis, University of Cambridge, 2015.


http://malteschwarzkopf.de/research/assets/google-stack.pdf

Chubby (2004)

Lock Service
UNIX-like file system interface
Reliability and availability

Chubby uses Paxos for everything

— Propagate writes to a file

— Choosing a Master

— Even for adding new Chubby servers to a Chubby cell

« Used by many services at Google (Colossus, Bigtable)
» Open-source version is called Zookeeper, also used as
building block in many systems



System Architecture

client

T
I
1
1

i B

chubby

application;: library

5 servers of a Chubby cell

client

T
1
1
1

A

chubby

application, library

client processes

* A chubby cell consists of a small set of servers (replicas)

— Placed in different racks, so as to minimize chance of correlated failures
A master is elected from the replicas via Paxos

— Master lease: several seconds

— If master fails, a new one will be elected, but only after master leases expire
« Client talks to the master via the chubby library

— All replicas are listed in DNS; clients discover master by talking to any repli€a



System Architecture (2)

T 5 servers of a Chubby cell
client ' chubby

application; library \LO i
client i chubby /Ev O i

application, library

A

client processes

Replicas maintain copies of a simple database
Clients send read/write requests only to the master
For a write:

— The master propagates it to replicas via Paxos
— Replies after the write reaches a majority of replicas

For a read:
— The master satisfies the read alone



System Architecture (3)

T

client ! chubby

application. library

e

T
1

client ' chubby
application library

A

client processes

5 servers of a Chubby cell

 If areplica fails and does not recover for a long time (a few hours)
— A fresh machine is selected to be a new replica, replacing the failed one

It updates the DNS
Obtains a recent copy of the database

The current master polls DNS periodically to discover new replicas
Integrating the new replica into the group is another Paxos run



Interface

e Supports a hierarchical namespace for lock
files.

O /Is/foo/OurPrimaryServer.lck

B First component (Is): lock service (common to all names)

B Second component (foo): the chubby cell (used in DNS lookup to
find the Chubby master)

B The rest: lock file name inside the cell

e Supports:

O

O
O

Atomic create, delete, atomic read of full contents, atomic write of full
contents, etc.

Reader and writer locks

Clients can subscribe to events (modifications of Chubbv



APls

Open()
— Mode: read/write/change ACL; Events; Lock-delay
— Create new file or directory?

Close()

GetContentsAndStat(), GetStat(), ReadDir()
SetContents(): set all contents; SetACL()
Delete()

Locks: Acquire(), TryAcquire(), Release()

Sequencers: GetSequencer(), SetSequencer(),
CheckSeqguencer()



Example: Primary Election
Open(“/Is/foo/OurServicePrimary”, “write mode”);
If (successful) {

// primary

SetContents(primary_identity);

} else {

// replica

Open(“/Is/foo/OurServicePrimary”, “read mode”,
“file-modification event”);

when notified of file modification:
primary = GetContentsAndStat();



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]

B o e e e o et et ] ot e el s1 query Ul & columnar store
data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] _

across-DC ACID database cross-DC multi-version DB A A columnar database
| Y e o o o o e o o o
v BigTable [CDG"06] ‘[ Dapper [SBB*10]

F pervasive tracing
Y

CPI? [ZTH*13]

interference mitigation A

A A

row-consistent multi-dimensional sparse map,

¥ GFS/Colossus [GGLO03] Y

distributed block store and file system

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 67
computing”, PhD thesis, University of Cambridge, 2015.



http://malteschwarzkopf.de/research/assets/google-stack.pdf

BigTable (2006)

* “A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map”

(row:string, column:string, timestamp:int64) -2 string

* Example: the (simplified) schema of the Webtable:

Webtable

"com.chn.www" —

Row name/key: up to 64KB,
10-100B typically, sorted.
In this case, reverse URLs.

cell w/ timestarmped  column families
versons +garbage
collection



Key Ideas

 Distributed tablets hold shards of the map

 Reads & writes within a row are transactional
— Independently of the number of columns touched
— But: no cross-row transactions possible

— Turns out users find this hard to deal with

« Example of good principles for DS design:
e stateless design (stores all state in Colossus, Chubby)
* layered design (relies on other services and structures)

* recursive design (tablet server locations are stored in
Rintahle itelf)



Tablets

« A Bigtable table is partitioned into many tablets based on row keys
— Tablets (100-200MB each) are stored in a particular structure in GFS
« Each tablet is served by one tablet server
— Tablets are stateless (all state is in GFS), hence they can restart at any time

“com.aaa” : ' i ¥

: & B it Tablet:

A LU LU UM BRI 5, E:‘)«!IE%Y quauununnninnn .
“com.cnn.edition NN e i g g, Start: com.aaa
“com.cnn.money” End: com.chn.www

“com.chn.www”
Tablet:

com.cnn.www/sports.html”

Start: com.cnn.www
“com.cnn. www/world/”

End: com.dodo.www

“com.dodo.www”

“com.website”

“com.yahoo/Kids.html’
“com.yahoo/kids.html?d ‘




The Bigtable API

+ Metadata operations
— Create/delete tables, column families, change metadata

« Writes: Single-row, atomic
— Set(): write cells in a row
— DeleteCells(): delete cells in a row
— DeleteRow(): delete all cells in a row

« Reads: Scanner abstraction
— Allows to read arbitrary cells in a Bigtable table

Each row read is atomic
Can restrict returned rows to a particular range
Can ask for just data from 1 row (getter), all rows (scanner), etc.

Can ask for all columns, just certain column families, or specific
columns

Can ask for certain timestamps only



APl Examples: Write

// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation rl1l (T, "com.cnn.www");
rl.Set ("anchor:www.c—-span.org", "CNN");
rl.Delete ("anchor:www.abc.com");
Operation op;

|l Apply (&0p, &rl):

atomic row modification

No support for (RDBMS-style) multi-row transactions



Servers

 Library linked into every client
« One master server
— Assigns/load-balances tablets to tablet servers
— Detects up/down tablet servers
— Garbage collects deleted tablets
— Coordinates metadata updates (e.g., create table, ...)
— Does NOT provide tablet location (we’ll see how this is gotten)

— Master is stateless — state is in Chubby and... Bigtable
(recursively)!

« Many tablet servers
— Tablet servers handle R/W requests to their tablets
— Split tablets that have grown too large
— Tablet servers are also stateless — their state is in GFS!



Chubby & Colossus State

Chubby state:
/Is/bt/master-server
/Is/bt/live-tablet-servers/

/ID1
/ID2

/Is/bt/first-metadata-server

Colossus state:

[fs/bt/tabletID1/
/log
/SS1
/SS2

[fs/bt/tabletIiD2/

Write on whiteboard




Tablet Assignment

1 Tablet => 1 Tablet server

Master
— keeps tracks of set of live tablet serves and unassigned tablets

— Master sends a tablet load request for unassigned tablet to the
tablet server

Bigtable uses Chubby to keep track of tablet servers

On startup a tablet server:

— Tablet server creates and acquires an exclusive lock on
unigquely named file in Chubby directory

— Master monitors the above directory to discover tablet servers

Tablet server stops serving tablets if it loses its exclusive lock

— Tries to reacquire the lock on its file as long as the file still
exists



Tablet Assignment

« If the file no longer exists, tablet server not able to
serve again and kills itself

« Master is responsible for finding when tablet server is
no longer serving its tablets and reassigning those
tablets as soon as possible.

» Master detects by checking periodically the status of
the lock of each tablet server.
— If tablet server reports the loss of lock

— Or if master could not reach tablet server after several
attempts.



Tablet Assignment

« Master tries to acquire an exclusive lock on server's
file.

— If master is able to acquire lock, then chubby is alive
and tablet server is either dead or having trouble
reaching chubby.

— |f so master makes sure that tablet server never can
server again by deleting its server file.

— Master moves all tablets assigned to that server into set
of unassigned tablets.

 If Chubby session expires, master Kills itself.

« When master is started, it needs to discover the
current tablet assignment.



Master Startup Operation

Grabs unique master lock in Chubby

— Prevents server instantiations

Scans directory in Chubby for live servers
Communicates with every live tablet server
— Discover all tablets

Scans METADATA table to learn the set of tablets
— Unassigned tables are marked for assignment



Locating Tablets

Since tablets move around from server to server,
given a row, how do clients find the right machine?

— Tablet properties: startRowIndex and endRowlndex

— Need to find tablet whose row range covers the target
row

One approach: could use the Bigtable master

— Central server almost certainly would be bottleneck in
large system

Instead: store special tables containing tablet location
info in the Bigtable cell itself (recursive design ©)



Tablets are located using a hierarchical
structure (B+ tree-like)

UserTable_ 1
METADATA

1St METADATA

(stored in one single
tablet, unsplittable)

Chubby lock file

@ J

UserTable_ N

/|

<table id, end_row> - location

Each METADATA record ~1KB
Max METADATA table = 128MB

Addressable table values in Bigtable = 22! TB



Tablet storage and R/W operation

» Uses Google SSTables, a key building block

* Without going into much detail, an SSTable:
- Is an immutable, sorted file of key-value pairs
- SSTable files are stored in GFS
- Keys are: <row, column, imestamp>
- SSTables allow only appends, no updates (delete possible)
« Why do you think they don't use something that supports updates?

SSTable

Index (block ranges)

64KB 64KB 64KB
Block Block Block




Read/Write Operations

memtable

Memory

f

GFS

tablet log

g

/

-
J\
\

SSTableFiles

Figure5: Tablet Representation



The Google Stack

data processing

FlumeJava [CRP*10]

Tenzing [CLL*11]

MillWheel [ABB™13]

Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing

| L

Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]
T D —— s1 query Ul & columnar store

data storage

MegaStore [BBC™11]
Across-DC ACID database

Spanner [CDE*13]

cross-DC multi-version DB

Dremel [MGL*10] _

A A columnar database

v BigTable [CDG*06]

row-consistent multi-dimensional sparse mapy, <

-~

Dapper [SBB*10]

pervasive tracing

i
GFS/Colossus [GGL03] ¥

distributed block store and file system

[
Y

CPI? [ZTH*13]

interference mitigation |

>

coordination & cluster management

Chubby [Bur(6] <

locking and coordination

Borg [VPK*15] and Omega [SKA*13] v

cluster manager and job scheduler

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge.

83



Spanner (2012)

« BigTable insufficient for some consistency needs

« Often have transactions across >1 data centres
— May buy app on Play Store while travelling in the U.S.
— Hit U.S. server, but customer billing data is in U.K.
— Or may need to update several replicas for fault tolerance

« Wide-area consistency is hard
— due to long delays and clock skew
— no global, universal notion of time
— NTP not accurate enough, PTP doesn’t work (jittery links)

84



Spanner (2012)

« Spanner offers transactional consistency: full RDBMS
power, ACID properties, at global scale!

« Secret sauce: hardware-assisted clock sync
— Using GPS and atomic clocks in data centres

» Use global timestamps and Paxos to reach consensus

— Still have a period of uncertainty for write TX: wait it out!
— Each timestamp is an interval:

|
tt.earliest I i I tt.latest

Definitely in t Definitely in
the past abs the future

85



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| X
Y MapReduce [DG08] Y Percolator [PD10]

4 parallel batch processing incremental processing | | PowerDrill [HBB*12]

¥ 'y
B o e e e o et et ] ot e el s1 query Ul & columnar store

data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] _

Across-DC ACID database cross-DC multi-version DB A A columnar database
| 4 e o o o o e o o o
v BigTable [CDG*06] ) ‘[ Dapper [SBB*10]

4

Y

-~

row-consistent multi-dimensional sparse mapy, < pervasive tracing

CPI? [ZTH*13]

interference mitigation |

i
v GFS/Colossus [GGL03] ¥

distributed block store and file system

>

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 86
computing”, PhD thesis, University of Cambridge, 2015.


http://malteschwarzkopf.de/research/assets/google-stack.pdf

MapReduce (2004)

e Parallel programming framework for scale
— Run a program on 100’s to 10,000’s machines

* Framework takes care of:

— Parallelization, distribution, load-balancing, scaling up
(or down) & fault-tolerance

 Accessible: programmer provides two methods ;-)
— map(key, value) — list of <key’, value’> pairs
— reduce(key’, value’) — result
— Inspired by functional programming

87



MapReduce

Jaleltiq Perform Map() query against local data
¢ matching input specification

Map

el

LS

A

SIS

AN A

J

J

S SE7

Shufﬂe Aggregate gathered results for each
i intermediate key using Reduce()

Reduce

\

Outpu

End user can query results via

distributed key/value store

L SC X — N SE S ~ . N S

Results: X: 8, Y: 8

7

Slide originally due to S. Hand’s distributed systems lecture course at Cambridge: 88
http://www.cl.cam.ac.uk/teaching/1112/ConcDisSys/DistributedSystems-1B-H4.pdf



MapReduce: Pros & Cons

 Extremely simple, and:

— Can auto-parallelize (since operations on every
element in input are independent)

— Can auto-distribute (since rely on underlying
Colossus/BigTable distributed storage)

— Gets fault-tolerance (since tasks are idempotent, i.e.

can just re-execute if a machine crashes)
* Doesn’t really use any sophisticated distributed
systems algorithms (except storage replication)
 However, not a panacea:

— Limited to batch jobs, and computations which are
expressible as a map() followed by a reduce()

89



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]

B o e e e o et et ] ot e el s1 query Ul & columnar store
data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL"10] _

Across-DC ACID database cross-DC multi-version DB A A columnar database
| 4 e o o o o e o o o
v BigTable [CDG*06] ) ‘[ Dapper [SBB*10]

4

Y

-~

row-consistent multi-dimensional sparse mapy, < pervasive tracing

i
v GFS/Colossus [GGL03] ¥

distributed block store and file system

CPI? [ZTH*13]

interference mitigation |

>

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 90
computing”, PhD thesis, University of Cambridge, 2015.



http://malteschwarzkopf.de/research/assets/google-stack.pdf

Dremel (2010)

e Column-oriented store
o For quick, interactive queries

EERECEE
EEEE BN (MEEEEEE EEECEE EEECO
HE EHOEE
EEEC N
EEEE HE
pr pompm| OOOOOONEEEEEEEEEEEEN

H BECOEN Column-oriented storage

Row-oriented storage

OO00000

91



Dremel (2010)

e Stores protocol buffers
o (Google’s universal serialization format
o Nested messages — nested columns
o Repeated fields — repeated records

e Efficient encoding
o Many sparse records: don’t store NULL fields

e Record re-assembly
o Need to put results back together into records
o Use a Finite State Machine (FSM) defined by
protocol buffer structure

92



The Google Stack

data processing
FlumeJava [CRP*10] | | Tenzing [CLL*11] | [ MillWheel [ABB*13] | |Pregel [MAB*10]

4 parallel programming SQL-on-MapReduce stream processing graph processing
| L
Y MapReduce [DG08] Y Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB*12]

B o e e e o et et ] ot e el s1 query Ul & columnar store
data storage ;

MegaStore [BBC™11] Spanner [CDE*13] Dremel [MGL*10] _

Across-DC ACID database cross-DC multi-version DB A A columnar database
| 4 e o o o o e o o o
v BigTable [CDG*06] ) ‘[ Dapper [SBB*10]

4

Y

-~

row-consistent multi-dimensional sparse mapy, < pervasive tracing

i
v GFS/Colossus [GGL03] ¥

distributed block store and file system

CPI? [ZTH*13]

interference mitigation |

>

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA"13] v

locking and coordination cluster manager and job scheduler

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 93
computing”, PhD thesis, University of Cambridge, 2015 (to appear).


http://malteschwarzkopf.de/research/assets/google-stack.pdf

Borg

e Cluster manager and scheduler
o Tracks machine and task liveness
o Decides where to run what

e (Consolidates workloads onto machines
o Efficiency gain, cost savings
o Need fewer clusters

o Watch Borg EuroSys’14 talk by John Wilkes:
https://www.youtube.com/watch?v=7/MwxA4Fj2|

4

94


https://www.youtube.com/watch?v=7MwxA4Fj2l4
https://www.youtube.com/watch?v=7MwxA4Fj2l4

Borg

Scheduler

BorgMaster
Paxos-replicated
persistent store

Link shard B

Figure reproduced after A. Verma et al., “Large-scale cluster management at
Google with Borg”, Proceedings of EuroSys 2015.

95



Borg: workloads |
Cluster A Cluster B Cluster C

Medium size Large size Medium (12k mach.)
Medium utilization : Medium utilization  : High utilization

A
T

0.8f

0.4f

0.0 o
\60
Jobs/tasks:
CPU/RAM:

Public trace

BN B B C

)
<)
)

O
.
O
o,
O
)
)
>
o]
5%
o]
o]

*
O
o

*
.0
7

*
O

*
O
‘0
0'0

*,
°
o,
O
°,
*

*e
O
O
S
S
o,

25¢9252525S

*

&
OO0

&
*

*
*

*,
)
.‘

&

L
O
)
O
L)
Lo
?,
»
9,
4,

°,
O
°,
*
°,
*
O
59
*
O

QOOOOOC |
OOOOO0

-
°
*
°,
*
.
*
O
*
o?,
O

o
.0
*

*
O

*
*
5
0‘0

03
*
°
*
O
O

S
ote%
O

OO
O
o,
O
OS¢

O
&
O
O
O
O
o

%

O
O
>
O

O
O
O
OOOO0

*
O
*
O
o,

O
*
*
*
*
>

0‘.‘ ..
*
*
Q)
O
O
O

0%0%0 0%

OO0
*
*
*

* 0.

O

*

O

*o

*

O
*,
O
5

OO
OO0
OO0
OO0
000
*
*

*

°

*
0.0.

0

*

*
*
O

*
*
*
o
7
*
°,
<

L)
5506

O
O

9000000000 0 0 00

o
0

O
*

O
*

OOOOOOOOOO0

*
*
OO
L)
0‘0’

-

L0

.

*
Q0

OO

counts
resource seconds [i.e. resource * job runtime in sec.]

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters”, Proceedings of EuroSys 2013.

B Batch Service

96




Borg: workloads

Service jobs run for much longer than batch jobs:
long-term user-facing services vs. one-off analytics.

"-C" e

= osr S/

(7))

Y

B ------ poe

y— “-"‘-'___-.::”'“_ ;

m 0'6 — _.‘.‘ ------------------------------------- ”.—..‘

[

c

>

e

w -

Re 0.4

O,

Y

(@)

o

= 0.21

O

m A

o

LL e B
— G

O.Ols 0 = 29d

Job runtime [log,,]

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters”, Proceedings of EuroSys 2013.

97



Borg: workloads

Batch jobs arrive more frequently than service jobs:

more numerous, shorter duration, fail more.
g 0.8 ; T
2
T 0.6
g
5
5
€ 04r
5
=S| | E—— S 1 S
'-§ ''''''
™ 0.2+
— A
— B
00 ims 1 S Imin 1h

Interarrival time [log,,]

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large

compute clusters”, Proceedings of EuroSys 2013.

98



1.0

0.8

0.6

0.4

0.2

Borg: workloads

- 1.0 ;
; 1 08
: &
© s = 44 06
—_— __: -t
= = I
Il = S
S NS & —4 04
) ‘N o
x ) o

— Service avg. CPI

| — Eatch avgé. CPI

0 u L2 l | | 0.0 : L& |
0 10 20 30 40 50 0 10 20 30 40 50

Cycles per instruction (CPI) Cycles per instruction (CPI)

Batch jobs have a longer-tailed CPI distribution:
lower scheduling priority in kernel scheduler.

Figures from M. Schwarzkopf, “Operating system support for warehouse-scale 99
computing”, PhD thesis, University of Cambridge, 2015.



Borg: workloads

1.0

0.8 1

0.6

0.4

02f 1°: :
EX — Batch avg. IPMA
00LL - 1 1 L

0 2000 4000 6000

1
8000 10000
Instructions per memory access (IPMA)

0.0 L
0

z i
il d
' —— éService avg. IPMA
B ] A 1 ]
2000 4000 6000 8000 10000

Instructions per memory access (IPMA)

Service workloads access memory more frequently:
larger working sets, less I/0.

Figures from M. Schwarzkopf, “Operating system support for warehouse-scale

100

computing”, PhD thesis, University of Cambridge, 2015.



The facebook Stack

parallel data processing : monitoring tools
Hive [TSA*10] | | Peregrine [MG12] | | Scuba [AAB*13]| ! | UberTrace [CMF*14, §3]

SQL-on-MapReduce interactive querying in-memory database

pervasive tracing

X B
Y (Hadoop) MapReduce [DGO08] | |Unicorn [CBB*13]| | | MysteryMachine [CMF*14]

A Ao parallel batch processing graph processing E performance modeling

| | datastorage e moneivb
¥ [Haystack [BKL*10] | [TAO [BAC*13]| [ Wormhole [SAA*15]
hot blob storage graph store p <> pub-sub replication A
A

Y HBase [BGS*11] Y {4 [MLR*14] memcached [NFG*13] ¥
multi-dimensional sparse map warm blob storage ) in-memory key-value store/cache
A | |
vy HDFS [SKR*10] ¥ ¥ MySQL \

distributed block store and file system sharded ACID database

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 101
computing”, PhD thesis, University of Cambridge, 2015.


http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

The facebook Stack

parallel data processing monitoring tools

Hive [TSA*10] | | Peregrine [MG12] | | Scuba [AAB*13] UberTrace [CMF*14, §3]

SQL on-MapReduce interactive querying in-memory database pervasive tracing

*(Hadoop) MapReduce,ge'g\A #Inicorn [CBB*13]| | | MysteryMachine [CMF"14]

graph processing E performance modeling

&k parallel batch )
| | datastorage e moneivb
¥ [Haystack [BKL*10] | [TAO [BAC*13]| [ Wormhole [SAA*15]
hot blob ?torage graph store p <> pub-sub replication A
Y HBase [BGS*11] f4 [MLR*14] memcached [NFG*13] ¥
multi-dimensional sp _S. warm blob storage ) in-memory key-value store/cache
A | |
vy HDFS [SKR* 10] % ¥ ¥ MySQL \
distributed block store and file system sharded ACID database

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 102
computing”, PhD thesis, University of Cambridge, 2015.


http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

The facebook Stack

parallel data processing : monitoring tools
Hive [TSA*10] | | Peregrine [MG12] | | Scuba [AAB*13]| ! | UberTrace [CMF*14, §3]

SQL-on-MapReduce interactive querying in-memory database

pervasive tracing

X B
Y (Hadoop) MapReduce [DGO08] | |Unicorn [CBB*13]| | | MysteryMachine [CMF*14]

A Ao parallel batch processing graph processing E performance modeling

|| datastorage —m———————— moneivb
¥ [Haystack [BKL'10] | [TAO [BAC*13]| [ Wormhole [SAA*15]
hot blob storage graph store p <> pub-sub replication A
A

Y HBase [BGS™11] Y 4 [MLR*14] memcached [NFG*13] Y
multi-dimensional sparse map warm blob storage in-memory key-value store/cache

A |
vy HDFS [SKR*10] ¥ ¥ MySQL \

distributed block store and file system sharded ACID database

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale 103
computing”, PhD thesis, University of Cambridge, 2015.


http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

Haystack & f4

e Blob stores, hold photos, videos
o not: status updates, messages, like counts

e [tems have a level of hotness
o How many users are currently accessing this?
o Baseline “cold” storage: MySQL

e \Want to cache close to users
o Reduces network traffic
o Reduces latency
o But cache capacity is limited!
o Replicate for performance, not resilience

104



What about
other companies’ stacks?



How about other companies?

e \ery similar stacks.
o Microsoft, Yahoo, Twitter all similar in principle.

e Typical set-up:
o Front-end serving systems and fast back-ends.
o Batch data processing systems.
o Multi-tier structured/unstructured storage hierarchy.
o Coordination system and cluster scheduler.

e Minor differences owed to business focus
o e.d., Amazon focused on inventory/shopping cart.

106



Open source software

Lots of open-source implementations!

e MapReduce — Hadoop, Spark, Metis
GFS — HDFS

BigTable — HBase, Cassandra
Borg — Mesos, Firmament
Chubby — Zookeeper

But also some releases from companies...

e Presto (Facebook)
e Kubernetes (Google Borg)

107


https://hadoop.apache.org/
http://spark.apache.org/
https://github.com/ydmao/Metis
http://hbase.apache.org/
http://cassandra.apache.org/
http://mesos.apache.org/
https://github.com/ms705/firmament
https://prestodb.io/
http://kubernetes.io/

The Spark Stack

MLlib
: GraphX == SparkSQL ,
Str‘ealn Croohe = User-friendly machine SOLAPI Hive

Stream processing learning

Hadoop MR

Fast me -oplimized execution engine (. Java/Scala APIs)

Storm

MPI

Tachyon pistributed Memory-Centric Storage System

Hadoop Distributed File System (HDFS)

Meso0s Cluster resource manager, multi-tenanc

. Supported Release . In Development [:] Related External Project




Newer Stacks

e Lots of new support for machine learning

o (Google: Tensorflow, Tensorflow Serving, Tensorflow
Extended (TFX)
o Uber: Michelangelo

o Spark/Berkeley Data Stack (BDAS): MLBase, MLIib,
Clipper



References

[1] Malte Schwartzkopf. “What does it taketo make Googlework at
scale?” 2015.
https://docs.google.com/presentation/d/10v)StE8aohGel3y5BcY
X8bBHWOHYCPU99A3KTTZEIrO/edit#slide=id.p.

[2] Jeff Dean. “Software Engineering Advice from Building
Large-Scale Distributed Systems,” 2007.
https://static.googleusercontent.com/media/research.google.co
m/en//people/jeff/stanford-295-talk.pdf.

[3]Jeff Dean. “Building Software Systems at Google and Lessons
Learned,” 2010.
https://static.googleusercontent.com/media/research.google.co
m/en//people/jeff/Stanford-DL-Nov-2010.pdf.

[4] Colin Scott. “Latency Numbers Every Programmer Should
Know.”
https://colin-scott.github.io/personal _website/research/interac



