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Broader View of Isolation and
Consistency Semantics
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Context
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• We talked about protocols for building DSes with “strong 
semantics” that mimic the gold standard behavior of a 
non-distributed, non-concurrent system.

– Serializable isolation: transactions appear to be executed 
sequentially, i.e., their individual ops don’t interfere.

– Linearizable consistency: across all replicas, transactions 
appear to be executed in an order consistent with the real 
time ordering of their commit and begin operations.

• Spanner satisfies strong semantics at expense of performance.
• This tradeoff is not always suitable, so today we discuss a 

broader spectrum of well-understood, useful semantics.
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Spanner is one point in the 
design space:
(transactional API,  linearizable 
consistency, serializable 
isolation).

Many other data points are 
possible, and give different 
performance/programmability 
tradeoffs.
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Isolation Semantics
(a.k.a., Isolation Levels)
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Isolation Semantics

• Relevant only for transactional APIs.
• Define how concurrent transactions interact with each other, i.e., 

whether individual effects of ongoing transactions can be 
witnessed by other transactions or not.

• Gold standard isolation is serializability: transactions are 
completely isolated from each other.  For this, the DB engine 
must serialize conflicting transactions, which is expensive.

• Other isolation levels exist that offer weaker semantics (and 
hence more corner cases to consider when programming against 
them) but better performance.
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Best Known Isolation Levels

• Serializability
• Repeatable reads
• Read committed
• Read uncommitted

8

Better 
performance

Worse 
programmability 

• Easiest to remember them by thinking about locks that can be 
avoided/taken for shorter periods of time to gradually improve 
performance.  But lockless implementations also exist.
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Brief Descriptions
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• Serializability:
– Take r/w row-level and r range locks; keep them for entire 

transaction.
– Ensures all conflicting, concurrent transactions are isolated from 

each other.
• Repeatable reads:

– Take r/w row-level locks, keep them for entire transaction.  Do not 
take r range locks at all.

– Ensures that all row-level reads are repeatable.
– Anomalies: phantom reads (concurrent Tx adds/removes row 

relevant to another transaction’s range query).
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Brief Descriptions
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• Read committed:
– Take w row-level locks, keep them for entire transaction. Take r 

row-level locks, keep them only while row is read. No range locks.
– Ensures that only committed updates are read.
– Anomalies: phantom reads + non-repeatable reads (you may read 

a row that’s being updated by another concurrent transaction, so 
depending on when you read that, the output may be different).

• Read uncommitted:
– Take w row-level locks, keep them for entire transaction.  No r locks, 

row-level or range-level.
– Ensures that rows are atomically written.
– Anomalies: phantom reads + non-repeatable reads + dirty reads 

(you may read a write of an in-process transaction that may 
ultimately be aborted).
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Comparisons

• Anomalies make it harder and harder for programmers to 
reason about behavior of DB.

• But less synchronization leads to better performance (this 
is true even in lockless implementations).

• Typically, default in commercial databases (e.g., Oracle, 
SQL Server, PostgreSQL, MySQL) is read committed.

11



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consistency Semantics
(a.k.a. Consistency Models)
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Consistency Semantics

• Relevant for both Tx and non-Tx APIs.  We’ll focus on non-Tx API.
• Constrain the order in which individual operations (or individual 

transactions for a Tx API) are witnessed by different readers.
• Gold standard is linearizability: operations are seen in the real time 

order in which they are “committed” (finished).  For this, the storage 
system must coordinate among replicas/shards, wait out clock 
uncertainty, etc. -- all of which can be very expensive.

• Other consistency models exist that offer weaker semantics (and 
hence more corner cases to consider when programming against 
them) but better performance, scalability, and sometimes availability.

13
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Best Known Consistency Models

• Strict consistency
• Linearizability
• Sequential consistency
• Causal consistency
• Eventual consistency

14

Better 
performance

Worse 
programmability 

• Variations boil down to: (1) the allowable staleness of reads 
and (2) the ordering of writes across all replicas.
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Examples with Replicated 
Distributed Shared Memory (DSM)

• To define consistency, we must 
define what values of reads are 
admissible by the DSM.

• The semantic restricts all 
possible executions.

• In the slides, we will use 
individual examples to show 
what’s admissible vs. not for a 
given semantic.

15

x x x

w(x)a r(x)?

P1 P2 P3

R1 R2 R3

P4

w(x)b r(x)?

DSM

x=nil 
initially 
across all 
replicas
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Structure of an Example

16

P1:    w(x)a

P2:               w(x)b
P3:                           r(x)?              r(x)?
P4:                                         r(x)?         r(x)?  

physical time

May differ from 
the time at 
which the op 
request gets to 
relevant replica!

Time at 
which client 
process 
issues op
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Strict Consistency

17

• Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes.

P1:  w(x)a

P2:         w(x)b

P3:                      r(x)?           r(x)?

P4:                                 r(x)?       r(x)?  

physical time
if DSM is strictly 
consistent, what 
can these reads 
return?
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Strict Consistency
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• Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes.
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P1:  w(x)a

P2:         w(x)b

P3:                      r(x)b           r(x)b

P4:                                 r(x)b       r(x)b  

physical time
P1:  w(x)a

P2:         w(x)b

P3:                      r(x)a            r(x)b

P4:                                 r(x)b       r(x)b  

physical time
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Strict Consistency
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• Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes.
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P1:  w(x)a

P2:         w(x)b

P3:                      r(x)b           r(x)b

P4:                                 r(x)b       r(x)b  

physical time
P1:  w(x)a

P2:         w(x)b

P3:                      r(x)a            r(x)b

P4:                                 r(x)b       r(x)b  

physical time
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Linearizability
• Defn: Any execution is the same as if all read/write ops were 

executed in some global order s.t. any read returns the value of 
the most recent completed write at that location. 

• Therefore: (1) Once a write completes, all later reads return the 
value of that write or of a later write. (2) Once a read returns a 
value, all later reads return that value or value of a later write.

P1:  w(x)a

P2:         w(x)b

P3:                      r(x)?           r(x)?

P4:                                 r(x)?       r(x)?  

if DSM is 
linearizable, 
what can these 
reads return?
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Linearizability
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P1:  w(x)a

P2:         w(x)b

P3:                 r(x)a               r(x)b

P4:                                 r(x)b       r(x)b  

P1:  w(x)a

P2:         w(x)b

P3:                 r(x)b               r(x)b

P4:                                 r(x)b       r(x)b  

P1:  w(x)a

P2:         w(x)b

P3:               r(x)b                  r(x)a

P4:                               r(x)a       r(x)a  

This is also strictly consistent This isn’t strictly consistent

P1:  w(x)a

P2:         w(x)b

P3:              r(x)b                  r(x)b

P4:                               r(x)b       r(x)b  
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Linearizability

P1:  w(x)a

P2:         w(x)b

P3:                 r(x)a               r(x)b

P4:                                 r(x)b       r(x)b  

P1:  w(x)a

P2:         w(x)b

P3:                 r(x)b               r(x)b

P4:                                 r(x)b       r(x)b  

P1:  w(x)a

P2:         w(x)b

P3:               r(x)b                  r(x)a

P4:                               r(x)a       r(x)a  

P1:  w(x)a

P2:         w(x)b

P3:              r(x)b                  r(x)b

P4:                               r(x)b       r(x)b  

These are also strictly consistent These aren’t strictly consistent
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Implementability
• Strict consistency isn’t implementable, but linearizability is.

• Spanner guarantees linearizability for its operations (view each 
transaction as an operation) based on the commit waits and combo 
of protocols we discussed last time.

• The best way to describe Spanner’s semantic is that it gives 
serializable isolation with linearizability consistency guarantee.

• This semantic is traditionally called strict serializability.
• In the Spanner paper, they call it external consistency.

• But the linearizability semantic applies to non-transactional systems 
too (e.g., DSMs, key/value stores, file systems, ...). 23



Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were 

executed in some global order, and the ops of each client process 
appear in the order specified by its program. (This global order 
that adheres to program order is called global sequential order.)

• Therefore: (1) Reads may be stale in real time, but not in logical 
time; (2) Writes are totally ordered according to logical time across 
all replicas.

24

P1:  w(x)a
P2:            w(x)b
P3:                      r(x)?           r(x)?
P4:                                 r(x)?       r(x)?  

if DSM is 
sequentially 
consistent, 
what can these 
reads return?



Sequential Consistency
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P1:  w(x)a
P2:            w(x)b
P3:                      r(x)b           r(x)b
P4:                                 r(x)b       r(x)b  

P1:  w(x)a
P2:            w(x)b
P3:                      r(x)a           r(x)b
P4:                                 r(x)b       r(x)b  

• Defn: Any execution is the same as if all read/write ops were 
executed in some global order, and the ops of each client process 
appear in the order specified by its program.



Sequential Consistency
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P1:  w(x)a
P2:            w(x)b
P3:                      r(x)b           r(x)b
P4:                                 r(x)b       r(x)b  

P1:  w(x)a
P2:            w(x)b
P3:                      r(x)a           r(x)b
P4:                                 r(x)b       r(x)b  

What’s a global sequential order 
that can explain these results?

What’s a global sequential order 
that can explain these results?

w(x)a, r(x)a, w(x)b, r(x)b, …physical-time ordering

This was also linearizable This wasn’t linearizable

• Defn: Any execution is the same as if all read/write ops were 
executed in some global order, and the ops of each client process 
appear in the order specified by its program.



Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were 

executed in some global order, and the ops of each client process 
appear in the order specified by its program.

P1:  w(x)a
P2:            w(x)b
P3:                       r(x)b       r(x)a
P4:                               r(x)a       r(x)b  

P1:  w(x)a          w(x)c
P2:            w(x)b
P3:                              r(x)c    r(x)a
P4:                                  r(x)a       r(x)b  



Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were 

executed in some global order, and the ops of each client process 
appear in the order specified by its program.

P1:  w(x)a
P2:            w(x)b
P3:                       r(x)b       r(x)a
P4:                               r(x)a       r(x)b  

P1:  w(x)a          w(x)c
P2:            w(x)b
P3:                              r(x)c    r(x)a
P4:                                  r(x)a       r(x)b  

No global sequential order can 
explain results.

No global order can explain 
these results…
        => not seq. consistent E.g.: the following global order

doesn’t preserve P1’s ordering:
w(x)c, r(x)c, w(x)a, r(x)a, w(x)b, …



Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write 

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

• Therefore: (1) Reads are fresh only w.r.t. the writes that they are 
causally dependent on; (2) Only causally-related writes are ordered by 
all replicas in the same way, but concurrent writes may be committed in 
different orders by different replicas, and hence read in different orders 
by different applications.

29



Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write 

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

30

P1:  w(x)a          w(x)c
P2:            w(x)b
P3:                              r(x)c    r(x)a
P4:                                  r(x)a       r(x)b  

30

P1:  w(x)a
P2:            w(x)b
P3:                      r(x)b           r(x)a
P4:                                 r(x)a       r(x)b  



Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write 

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

31

P1:  w(x)a          w(x)c
P2:            w(x)b
P3:                              r(x)c    r(x)a
P4:                                  r(x)a       r(x)b  
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P1:  w(x)a
P2:            w(x)b
P3:                      r(x)b           r(x)a
P4:                                 r(x)a       r(x)b  

Having read c (r(x)c), P3 must 
continue to read c or some newer 
value (perhaps b), but can’t go back 
to a, b/c w(x)c was conditional upon 
w(x)a having finished.

Only per-process ordering restrictions:
w(x)b < r(x)b; r(x)b < r(x)a; …

w(x)a || w(x)b, hence they can be seen 
in ≠ orders by ≠ processesThis wasn’t sequentially consistent.



P1:  w(x)a
P2:            r(x)a   w(x)b
P3:                              r(x)b    r(x)a
P4:                                  r(x)a       r(x)b  

Causal Consistency

32

• Defn: Any execution is the same as if all causally-related read/write 
ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.



P1:  w(x)a
P2:            r(x)a   w(x)b
P3:                              r(x)b    r(x)a
P4:                                  r(x)a       r(x)b  

Causal Consistency

33

w(x)b is causally-related on r(x)a, which 
is causally-related on w(x)a.
Therefore, system must enforce w(x)a < 
w(x)b ordering.
But P3 violates that ordering, b/c it 
reads a after reading b.

• Defn: Any execution is the same as if all causally-related read/write 
ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.



Why Causal Consistency?

• Causal consistency is strictly weaker than sequential consistency 
and can give weird results, as you’ve seen.

• BUT: it also requires less coordination, hence better 
performance.

• Note that in causally consistent systems, you don't actually ever 
have inversions of concurrent updates on the same object, it's very 
easy and efficient to prevent that.
– But concurrent updates on different objects (e.g., w(x)5 || 

w(y)7) can be seen in different orders by different replicas.
34



Eventual Consistency

• Allow stale reads, but ensure that reads will eventually 
reflect previously written values, even after a long time.

• Doesn’t order writes as they are executed, which might 
create conflicts later: which write was first?

• Used in Amazon’s Dynamo, a key/value store
– Plus a lot of academic systems
– Plus file synchronization
– Plus source control systems like… git!

35



Sequential vs. Eventual Consistency
• Sequential: pessimistic concurrency handling

– Decide on update order as updates are executed

• Eventual: optimistic concurrency handling
– Let updates happen, worry about deciding their order later
– May raise conflicts

• Think about when you code offline for a while – you may need 
to resolve conflicts with other team members when you commit

• Resolving conflicts is not that difficult with code, but it’s really 
hard in general (e.g., think about resolving conflicts when two 
people update an image or a binary -- how to merge?)



Why (Not) Eventual Consistency?

✔ Supports disconnected operations or network partitions
– Better to read a stale value than nothing
– Better to save writes somewhere than nothing

✔ Supports for increased parallelism
– But that’s not what people have typically used this for

● Can lead to anomalous application behavior
– Stale reads and conflicting writes…



Many Other Consistency Models Exist

• Other standard consistency models
– Monotonic reads
– Monotonic writes
– … read Tanenbaum 7.3 if interested (these are not required for exam)

• In-house consistency models:
– Andrew File System’s close-to-open
– Google File System’s atomic at-most-once appends

38
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Useful References

Google’s doc for Cloud Spanner:
https://cloud.google.com/spanner/docs/true-time-external-con
sistency
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