
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Broader View of Isolation and
Consistency Semantics

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

3

• We talked about protocols for building DSes with “strong
semantics” that mimic the gold standard behavior of a
non-distributed, non-concurrent system.

– Serializable isolation: transactions appear to be executed
sequentially, i.e., their individual ops don’t interfere.

– Linearizable consistency: across all replicas, transactions
appear to be executed in an order consistent with the real
time ordering of their commit and begin operations.

• Spanner satisfies strong semantics at expense of performance.
• This tradeoff is not always suitable, so today we discuss a

broader spectrum of well-understood, useful semantics.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

5

Spanner is one point in the
design space:
(transactional API, linearizable
consistency, serializable
isolation).

Many other data points are
possible, and give different
performance/programmability
tradeoffs.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Isolation Semantics
(a.k.a., Isolation Levels)

6

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Isolation Semantics

• Relevant only for transactional APIs.
• Define how concurrent transactions interact with each other, i.e.,

whether individual effects of ongoing transactions can be
witnessed by other transactions or not.

• Gold standard isolation is serializability: transactions are
completely isolated from each other. For this, the DB engine
must serialize conflicting transactions, which is expensive.

• Other isolation levels exist that offer weaker semantics (and
hence more corner cases to consider when programming against
them) but better performance.

7

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Best Known Isolation Levels

• Serializability
• Repeatable reads
• Read committed
• Read uncommitted

8

Better
performance

Worse
programmability

• Easiest to remember them by thinking about locks that can be
avoided/taken for shorter periods of time to gradually improve
performance. But lockless implementations also exist.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Brief Descriptions

9

• Serializability:
– Take r/w row-level and r range locks; keep them for entire

transaction.
– Ensures all conflicting, concurrent transactions are isolated from

each other.
• Repeatable reads:

– Take r/w row-level locks, keep them for entire transaction. Do not
take r range locks at all.

– Ensures that all row-level reads are repeatable.
– Anomalies: phantom reads (concurrent Tx adds/removes row

relevant to another transaction’s range query).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Brief Descriptions

10

• Read committed:
– Take w row-level locks, keep them for entire transaction. Take r

row-level locks, keep them only while row is read. No range locks.
– Ensures that only committed updates are read.
– Anomalies: phantom reads + non-repeatable reads (you may read

a row that’s being updated by another concurrent transaction, so
depending on when you read that, the output may be different).

• Read uncommitted:
– Take w row-level locks, keep them for entire transaction. No r locks,

row-level or range-level.
– Ensures that rows are atomically written.
– Anomalies: phantom reads + non-repeatable reads + dirty reads

(you may read a write of an in-process transaction that may
ultimately be aborted).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Comparisons

• Anomalies make it harder and harder for programmers to
reason about behavior of DB.

• But less synchronization leads to better performance (this
is true even in lockless implementations).

• Typically, default in commercial databases (e.g., Oracle,
SQL Server, PostgreSQL, MySQL) is read committed.

11

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consistency Semantics
(a.k.a. Consistency Models)

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consistency Semantics

• Relevant for both Tx and non-Tx APIs. We’ll focus on non-Tx API.
• Constrain the order in which individual operations (or individual

transactions for a Tx API) are witnessed by different readers.
• Gold standard is linearizability: operations are seen in the real time

order in which they are “committed” (finished). For this, the storage
system must coordinate among replicas/shards, wait out clock
uncertainty, etc. -- all of which can be very expensive.

• Other consistency models exist that offer weaker semantics (and
hence more corner cases to consider when programming against
them) but better performance, scalability, and sometimes availability.

13

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Best Known Consistency Models

• Strict consistency
• Linearizability
• Sequential consistency
• Causal consistency
• Eventual consistency

14

Better
performance

Worse
programmability

• Variations boil down to: (1) the allowable staleness of reads
and (2) the ordering of writes across all replicas.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Examples with Replicated
Distributed Shared Memory (DSM)

• To define consistency, we must
define what values of reads are
admissible by the DSM.

• The semantic restricts all
possible executions.

• In the slides, we will use
individual examples to show
what’s admissible vs. not for a
given semantic.

15

x x x

w(x)a r(x)?

P1 P2 P3

R1 R2 R3

P4

w(x)b r(x)?

DSM

x=nil
initially
across all
replicas

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Structure of an Example

16

P1: w(x)a

P2: w(x)b
P3: r(x)? r(x)?
P4: r(x)? r(x)?

physical time

May differ from
the time at
which the op
request gets to
relevant replica!

Time at
which client
process
issues op

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Strict Consistency

17

• Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

P1: w(x)a

P2: w(x)b

P3: r(x)? r(x)?

P4: r(x)? r(x)?

physical time
if DSM is strictly
consistent, what
can these reads
return?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Strict Consistency

18

• Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

18

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

physical time
P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

physical time

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Strict Consistency

19

• Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

• Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

19

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

physical time
P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

physical time

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Linearizability
• Defn: Any execution is the same as if all read/write ops were

executed in some global order s.t. any read returns the value of
the most recent completed write at that location.

• Therefore: (1) Once a write completes, all later reads return the
value of that write or of a later write. (2) Once a read returns a
value, all later reads return that value or value of a later write.

P1: w(x)a

P2: w(x)b

P3: r(x)? r(x)?

P4: r(x)? r(x)?

if DSM is
linearizable,
what can these
reads return?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu
Linearizability

21

P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)a

This is also strictly consistent This isn’t strictly consistent

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu
Linearizability

P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)a

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

These are also strictly consistent These aren’t strictly consistent

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Implementability
• Strict consistency isn’t implementable, but linearizability is.

• Spanner guarantees linearizability for its operations (view each
transaction as an operation) based on the commit waits and combo
of protocols we discussed last time.

• The best way to describe Spanner’s semantic is that it gives
serializable isolation with linearizability consistency guarantee.

• This semantic is traditionally called strict serializability.
• In the Spanner paper, they call it external consistency.

• But the linearizability semantic applies to non-transactional systems
too (e.g., DSMs, key/value stores, file systems, ...). 23

Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were

executed in some global order, and the ops of each client process
appear in the order specified by its program. (This global order
that adheres to program order is called global sequential order.)

• Therefore: (1) Reads may be stale in real time, but not in logical
time; (2) Writes are totally ordered according to logical time across
all replicas.

24

P1: w(x)a
P2: w(x)b
P3: r(x)? r(x)?
P4: r(x)? r(x)?

if DSM is
sequentially
consistent,
what can these
reads return?

Sequential Consistency

25

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)b
P4: r(x)b r(x)b

P1: w(x)a
P2: w(x)b
P3: r(x)a r(x)b
P4: r(x)b r(x)b

• Defn: Any execution is the same as if all read/write ops were
executed in some global order, and the ops of each client process
appear in the order specified by its program.

Sequential Consistency

26

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)b
P4: r(x)b r(x)b

P1: w(x)a
P2: w(x)b
P3: r(x)a r(x)b
P4: r(x)b r(x)b

What’s a global sequential order
that can explain these results?

What’s a global sequential order
that can explain these results?

w(x)a, r(x)a, w(x)b, r(x)b, …physical-time ordering

This was also linearizable This wasn’t linearizable

• Defn: Any execution is the same as if all read/write ops were
executed in some global order, and the ops of each client process
appear in the order specified by its program.

Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were

executed in some global order, and the ops of each client process
appear in the order specified by its program.

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

P1: w(x)a w(x)c
P2: w(x)b
P3: r(x)c r(x)a
P4: r(x)a r(x)b

Sequential Consistency
• Defn: Any execution is the same as if all read/write ops were

executed in some global order, and the ops of each client process
appear in the order specified by its program.

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

P1: w(x)a w(x)c
P2: w(x)b
P3: r(x)c r(x)a
P4: r(x)a r(x)b

No global sequential order can
explain results.

No global order can explain
these results…
 => not seq. consistent E.g.: the following global order

doesn’t preserve P1’s ordering:
w(x)c, r(x)c, w(x)a, r(x)a, w(x)b, …

Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

• Therefore: (1) Reads are fresh only w.r.t. the writes that they are
causally dependent on; (2) Only causally-related writes are ordered by
all replicas in the same way, but concurrent writes may be committed in
different orders by different replicas, and hence read in different orders
by different applications.

29

Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

30

P1: w(x)a w(x)c
P2: w(x)b
P3: r(x)c r(x)a
P4: r(x)a r(x)b

30

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

Causal Consistency
• Defn: Any execution is the same as if all causally-related read/write

ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

31

P1: w(x)a w(x)c
P2: w(x)b
P3: r(x)c r(x)a
P4: r(x)a r(x)b

31

P1: w(x)a
P2: w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

Having read c (r(x)c), P3 must
continue to read c or some newer
value (perhaps b), but can’t go back
to a, b/c w(x)c was conditional upon
w(x)a having finished.

Only per-process ordering restrictions:
w(x)b < r(x)b; r(x)b < r(x)a; …

w(x)a || w(x)b, hence they can be seen
in ≠ orders by ≠ processesThis wasn’t sequentially consistent.

P1: w(x)a
P2: r(x)a w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

Causal Consistency

32

• Defn: Any execution is the same as if all causally-related read/write
ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

P1: w(x)a
P2: r(x)a w(x)b
P3: r(x)b r(x)a
P4: r(x)a r(x)b

Causal Consistency

33

w(x)b is causally-related on r(x)a, which
is causally-related on w(x)a.
Therefore, system must enforce w(x)a <
w(x)b ordering.
But P3 violates that ordering, b/c it
reads a after reading b.

• Defn: Any execution is the same as if all causally-related read/write
ops were executed in an order that reflects their causality.
– All concurrent ops may be seen in different orders.

Why Causal Consistency?

• Causal consistency is strictly weaker than sequential consistency
and can give weird results, as you’ve seen.

• BUT: it also requires less coordination, hence better
performance.

• Note that in causally consistent systems, you don't actually ever
have inversions of concurrent updates on the same object, it's very
easy and efficient to prevent that.
– But concurrent updates on different objects (e.g., w(x)5 ||

w(y)7) can be seen in different orders by different replicas.
34

Eventual Consistency

• Allow stale reads, but ensure that reads will eventually
reflect previously written values, even after a long time.

• Doesn’t order writes as they are executed, which might
create conflicts later: which write was first?

• Used in Amazon’s Dynamo, a key/value store
– Plus a lot of academic systems
– Plus file synchronization
– Plus source control systems like… git!

35

Sequential vs. Eventual Consistency
• Sequential: pessimistic concurrency handling

– Decide on update order as updates are executed

• Eventual: optimistic concurrency handling
– Let updates happen, worry about deciding their order later
– May raise conflicts

• Think about when you code offline for a while – you may need
to resolve conflicts with other team members when you commit

• Resolving conflicts is not that difficult with code, but it’s really
hard in general (e.g., think about resolving conflicts when two
people update an image or a binary -- how to merge?)

Why (Not) Eventual Consistency?

✔ Supports disconnected operations or network partitions
– Better to read a stale value than nothing
– Better to save writes somewhere than nothing

✔ Supports for increased parallelism
– But that’s not what people have typically used this for

● Can lead to anomalous application behavior
– Stale reads and conflicting writes…

Many Other Consistency Models Exist

• Other standard consistency models
– Monotonic reads
– Monotonic writes
– … read Tanenbaum 7.3 if interested (these are not required for exam)

• In-house consistency models:
– Andrew File System’s close-to-open
– Google File System’s atomic at-most-once appends

38

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Useful References

Google’s doc for Cloud Spanner:
https://cloud.google.com/spanner/docs/true-time-external-con
sistency

39

