
Bigtable: A Distributed Storage
System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, Robert E. Gruber

OSDI 2006

Slide acks to: Mohsen Taheriyan
(http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx) 3

Bigtable Description Outline

• Motivation and goals (last time)

• Schemas, interfaces, and semantics (with code)
(today)

• Architecture (today)

• Implementation details (today, or you’ll read on your
own)

4

Bigtable Goals (Reminder)
• A distributed storage system for (semi-)structured data

• Scalable

– Thousands of servers

– Terabytes of in-memory data

– Petabyte of disk-based data

– Millions of reads/writes per second, efficient scans

• Self-managing

– Servers can be added/removed dynamically

– Servers adjust to load imbalance

• Extremely popular at Google (as of 2008)

– Web indexing, personalized search, Google Earth, Google

Analytics, Google Finance, …
5

Background

• Building blocks

– Google File System (GFS): Raw storage

– Scheduler: Schedules jobs onto machines

– Chubby: Lock service

• BigTable uses of building blocks

– GFS: stores all persistent state

– Scheduler: schedules jobs involved in BigTable serving

– Chubby: master election, location bootstrapping

6

GFS (Reminder)

• Master manages metadata
• Data transfers happen directly between clients/chunkservers
• Files broken into chunks (typically 64 MB)
• Chunks replicated across three machines for reliability

GFS Master Client

Client

C1 C0 C0

C3 C3 C4

C1

C5

C3

C4

Chunk
servers

7

Typical Cluster

Cluster Scheduling Master Lock Service
(Chubby)

GFS Master

Machine 1

Scheduler
Slave

GFS
Chunk Server

Linux

User Task
(Map/Reduce)

Machine 2

Scheduler
Slave

GFS
Chunk Server

Linux

User Task
(Map/Reduce)

Machine 3

Scheduler
Slave

GFS
Chunk Server

Linux

Bigtable
Server

Bigtable
Server

Bigtable Master

by-and-large stateless!

stateful!
8

Specific Example: Web Search

Source: “Hbase in Action”, Dimiduk, et.al,
http://www.manning.com/dimidukkhurana/HBiAs
ample_ch1.pdf

Note: ignores page rank
functionality for simplicity

Webtable

9

Specific Example: Web Search

Source: “Hbase in Action”, Dimiduk, et.al,
http://www.manning.com/dimidukkhurana/HBiAs
ample_ch1.pdf

targeted queries
(should not require scans!) full or partial

table scans

inserts or updates of page
contents and anchors to pages

Note: ignores page rank
functionality for simplicity

Webtable

10

Bigtable Description Outline

• Motivation and goals (last time)

• Schemas, interfaces, and semantics (with code)
(today)

• Architecture (today)

• Implementation details (today, or you’ll read on your
own)

11

Basic Data Model

• “A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map”

(row:string, column:string, timestamp:int64)  string
• Example: the (simplified) schema of the Webtable:

Webtable

Row name/key: up to 64KB,
10-100B typically, sorted.
In this case, reverse URLs.

column families cell w/ timestamped
versions + garbage

collection
12

Rows

• Row names/keys are arbitrary strings and are ordered
lexicographically
– Rows close together lexicographically are stored on one or a small

number of machines

• Hence, programmers can manipulate row names to achieve
good locality in their programs
– Example: com.cnn.www vs. www.cnn.com – which row key provides

more locality for site-local queries?

• Access to data in a row is atomic
– Data row is the only unit of atomicity in Bigtable

• Does not support relational model
– No table integrity constraints, no multi-row transactions

13

Row-based Locality

14

• Using reversed-DNS URLs clusters URLs from the same
site together, to speed up site-local queries
– com.cnn.edition, com.cnn.money, com.cnn.www

money.cnn.com

edition.cnn.com

www.cnn.com
Matches from
same site should
be retrieved
together by
accessing the
minimal number
of machines

Columns

• Columns have a two-level name structure:
family:optional_qualifier

• Column family
– Unit of access control
– Has associated type information
– There are few column families

• Qualifier gives unbounded # of columns in each row
– Provides additional levels of indexing, if desired
– Extremely sparsely populated across rows

“CNN”

“anchor:cnnsi.com”

“<html>..” com.cnn.www

“contents:” “anchor:stanford.edu”

“CNN
homepage”

15

“lang:”

“EN”

Timestamps

• Used to store different versions of data in a cell
– New writes default to current time, but timestamps for writes can

also be set explicitly by clients

• Lookup options:
– “Return most recent N values”

– “Return all values in timestamp range (or all values)”

• Column families can be marked w/ attributes:
– “Only retain most recent N versions in a cell”

– “Keep values until they are older than T seconds”

• Example uses:

– Keep multiple versions of the data (e.g., Web pages)

16

The Bigtable API

• Metadata operations
– Create/delete tables, column families, change metadata

• Writes: Single-row, atomic
– Set(): write cells in a row

– DeleteCells(): delete cells in a row

– DeleteRow(): delete all cells in a row

• Reads: Scanner abstraction
– Allows to read arbitrary cells in a Bigtable table

• Each row read is atomic

• Can restrict returned rows to a particular range

• Can ask for just data from 1 row (getter), all rows (scanner), etc.

• Can ask for all columns, just certain column families, or specific
columns

• Can ask for certain timestamps only

17

API Examples: Write

18

atomic row modification

No support for (RDBMS-style) multi-row transactions

Example Exercise:
Define Bigtable Schema for

(Simplified) Twitter

20

• At the exam, you’ll get a Bigtable schema design question

– To prep, do this example at home, ask specific questions on Piazza

• Exercise: Based on Webtable’s Bigtable schema, define a schema for
an efficient, simplified version of Twitter

• Recommended design steps:

– Restrict Twitter to some basic functionality and formulate the kinds of
queries you might need to run to achieve that functionality

• Example functionality: display tweets from the persons the user follows

– Identify locality requirements for your queries to be efficient

– Design your Bigtable schema (row names, column families, column names
within each family, and cell contents) that would support the identified
queries efficiently

– Hint: Don’t worry about replicating some data, such as tweet IDs, for fast
access

Bigtable Description Outline

• Motivation and goals (last time)

• Schemas, interfaces, and semantics (with code)
(today)

• Architecture (today)

• Implementation details (today, or you’ll read on your
own)

21

• A Bigtable table is partitioned into many tablets based on row keys

– Tablets (100-200MB each) are stored in a particular structure in GFS

• Each tablet is served by one tablet server

– Tablets are stateless (all state is in GFS), hence they can restart at any time

Tablets

22

“com.cnn.www”

“contents:”

“<html>…”

“language:”

 EN

“com.cnn.www/world/”

“com.zuppa/menu.html”

“com.yahoo/kids.html”

“com.yahoo/kids.html?d”

“com.website”

“com.aaa”

“com.cnn.edition”

“com.cnn.money”

…

“com.cnn.www/sports.html”

… …

…
“com.dodo.www”

Tablet:
Start: com.aaa
End: com.cnn.www

Tablet:
Start: com.cnn.www
End: com.dodo.www

Tablet Structure

• Uses Google SSTables, a key building block

• Without going into much detail, an SSTable:

– Is an immutable, sorted file of key-value pairs

– SSTable files are stored in GFS

– Keys are: <row, column, timestamp>

– SSTables allow only appends, no updates (delete possible)
• Why do you think they don’t use something that supports updates?

SSTable

64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

…

23

• A Tablet stores a range of rows from a table using
SSTable files, which are stored in GFS

Tablet Structure

24

64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

SSTable

… 64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

SSTable

…
…

Tablet

Start: aardvark End: apple

Files in GFS

Tablet Splitting

• When tablets grow too big, they are split

• There’s merging, too

…

“contents:”

“<html>…”

“language:”

 EN

“com.zuppa/menu.html”

“com.yahoo/kids.html”

“com.yahoo/kids.html?d”

“com.website”

“com.aaa”

“com.cnn.edition”

“com.cnn.money”

…

…

“com.yahoo/parents.html”

“com.yahoo/parents.html?d”

“com.xuma”

…

25

Servers

• Library linked into every client
• One master server

– Assigns/load-balances tablets to tablet servers

– Detects up/down tablet servers

– Garbage collects deleted tablets

– Coordinates metadata updates (e.g., create table, …)

– Does NOT provide tablet location (we’ll see how this is gotten)

– Master is stateless – state is in Chubby and… Bigtable
(recursively)!

• Many tablet servers
– Tablet servers handle R/W requests to their tablets
– Split tablets that have grown too large
– Tablet servers are also stateless – their state is in GFS!

 26

System Architecture

GFS

holds tablet data

Chubby

holds metadata,
handles master-election

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master

performs metadata ops,
load balancing

Bigtable cell Bigtable client

Bigtable client
library

Open()
Read/write

Metadata ops

27

Locating Tablets

• Since tablets move around from server to server,
given a row, how do clients find the right machine?

– Tablet properties: startRowIndex and endRowIndex

– Need to find tablet whose row range covers the target
row

• One approach: could use the Bigtable master

– Central server almost certainly would be bottleneck in
large system

• Instead: store special tables containing tablet location
info in the Bigtable cell itself (recursive design )

28

Tablets are located using a hierarchical
structure (B+ tree-like)

29

…
 …

 Chubby lock file

1st METADATA
(stored in one single
tablet, unsplittable)

METADATA

UserTable_1

UserTable_N

<table_id, end_row>  location

Each METADATA record ~1KB
Max METADATA table = 128MB

Addressable table values in Bigtable = 221 TB

Bigtable Description Outline

• Motivation and goals (last time)

• Schemas, interfaces, and semantics (with code)
(today)

• Architecture (today)

• Implementation details (today, or you’ll read on your
own)

30

Tablet Assignment

• 1 Tablet => 1 Tablet server
• Master

– keeps tracks of set of live tablet serves and unassigned tablets
– Master sends a tablet load request for unassigned tablet to the

tablet server

• Bigtable uses Chubby to keep track of tablet servers

• On startup a tablet server:
– Tablet server creates and acquires an exclusive lock on

uniquely named file in Chubby directory
– Master monitors the above directory to discover tablet servers

• Tablet server stops serving tablets if it loses its exclusive lock
– Tries to reacquire the lock on its file as long as the file still

exists 31

Tablet Assignment

• If the file no longer exists, tablet server not able to
serve again and kills itself

• Master is responsible for finding when tablet server is
no longer serving its tablets and reassigning those
tablets as soon as possible.

• Master detects by checking periodically the status of
the lock of each tablet server.

– If tablet server reports the loss of lock

– Or if master could not reach tablet server after several
attempts.

32

Tablet Assignment

• Master tries to acquire an exclusive lock on server's
file.

– If master is able to acquire lock, then chubby is alive
and tablet server is either dead or having trouble
reaching chubby.

– If so master makes sure that tablet server never can
server again by deleting its server file.

– Master moves all tablets assigned to that server into set
of unassigned tablets.

• If Chubby session expires, master kills itself.

• When master is started, it needs to discover the
current tablet assignment.

33

Master Startup Operation

• Grabs unique master lock in Chubby

– Prevents server instantiations

• Scans directory in Chubby for live servers

• Communicates with every live tablet server

– Discover all tablets

• Scans METADATA table to learn the set of tablets

– Unassigned tables are marked for assignment

34

Bigtable Summary

• Scalable distributed storage system for semi-
structured data

• Offers a multi-dimensional-map interface

– <row, column, timestamp>  value

• Offers atomic reads/writes within a row

• Key design philosophy: statelessness, which is key for
scalability

– All Bigtable servers (including master) are stateless

– All state is stored in reliable GFS and Chubby systems

– Bigtable leverages strong-semantic operations in these
systems (appends in GFS, file locks in Chubby) 35

	Bigtable: A Distributed Storage System for Structured Data�
	Bigtable Description Outline
	Bigtable Goals (Reminder)
	Background
	GFS (Reminder)
	Typical Cluster
	Specific Example: Web Search
	Specific Example: Web Search
	Bigtable Description Outline
	Basic Data Model
	Rows
	Row-based Locality
	Columns
	Timestamps
	The Bigtable API
	API Examples: Write
	Example Exercise:�Define Bigtable Schema for �(Simplified) Twitter
	Bigtable Description Outline
	Tablets
	Tablet Structure
	Tablet Structure
	Tablet Splitting
	Servers
	System Architecture
	Locating Tablets
	Tablets are located using a hierarchical structure (B+ tree-like)
	Bigtable Description Outline
	Tablet Assignment
	Tablet Assignment
	Tablet Assignment
	Master Startup Operation
	Bigtable Summary

