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Consensus Protocols
(Paxos)
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Context

• We learned how to achieve atomicity, 
isolation in a sharded database.

• Today we learn how to achieve fault 
tolerance through replication.  Problem 
of maintaining multiple replicated 
shards can ultimately be reduced to 
consensus.

• We discuss Paxos, the best known 
consensus protocol.
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Outline

• Problem: Replicating ACID shards
• Mock protocol with 2PC
• Consensus protocols
• Paxos
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Problem:
Replicating ACID shards
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Example: Web Service with Transactions

• Assume: sharded database.    
Each DB shard runs an ACID 
engine (so runs 2PL+WAL).  The 
shards coordinate via 2PC.

• Question: Without shard 
replication, what fault tolerance 
problems can arise?
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Example: Web Service with Transactions

• Fault tolerance problems w/o replication:
– Data, WAL for each shard are stored on 

one disk.  If disk dies, shard’s data is lost.  
Durability problem!

– Even if disks don’t fail, recall that 2PC can 
block if a shard server fails at inopportune 
time. Transactions interacting with the 
failed server block, along with many new 
transactions that transitively depend on 
rows  locked by the blocked transactions.  
Availability problems!
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Solution: Replication

• Architecture:
– Replicate each shard across multiple 

servers (each ACID, so they maintain 
WAL and do 2PL).

– Replicas of a shard coordinate to maintain 
their state “in sync,” ideally giving the 
illusion that they are a single, (almost) 
always-on server.

– 2PC is executed across replica groups 
(we’ll discuss how in future lectures).  
Because replica groups “never” die or 
become partitioned, 2PC “never” blocks.
8
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Question 1: What State to Replicate?

- Disk image?
- In-memory image?
- WAL?
- Locks?
- … Anything else? 
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A
(ACID)

B
(ACID)

C
(ACID)

replica group for shard 1

protocol
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Basic Answer: Replicate WAL

• Claim: If all replicas execute all WAL ops, in the same 
order, then all other state (DB image, locks, …) will be 
reconstructed in the same way across replicas 
(assuming deterministic operation).

• It can be useful to be able to push checkpoints of the DB 
to a recovering/new replica, but we’ll ignore that for now 
and focus on replicating the WAL.
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Question 2: What Semantic to Require?

• Requirement: all replicas apply (1) the same log entries, 
(2) in the same order.

• Otherwise, inconsistencies can occur.
• As examples, consider:

– One replica skips log entry for an update while others apply it.
– One replica receives two updates for a particular row in one 

order while another receives them reversed.
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Question 3: How to Replicate?

• Requirement: all replicas apply (1) the same log entries,  
(2) in the same order.

• One idea: 2PC.
– 2PC ensures that all participants either do all ops or          

don’t do any of the operations. 
– Could we use this protocol for WAL replication?
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Mock protocol based on 2PC
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Mock 2PC-based Replication
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2. PREPARE-

OK/FAIL
1. PREPARE

A

B

C

Commit Phase

4. OK
A

B

C

Prepare Phase

• A, B, C are replicas of a single shard.  They need to 
coordinate to apply all WAL entries in the same order.

• Discuss how might it work and what problems would arise.

BREAKOUT 
ACTIVITY!

3. COMMIT/ABORT
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Roxana’s Mock

15

• One replica assigned as TC.  TC decides on order of ops 
in the log and performs 2PC for each log entry, every time 
blocking for the protocol to finish before launching a 2PC 
for the next log entry.

• This ensures that all replicas:
– Apply all log entries (thanks to 2PC).
– Apply log entries in the same order (thanks to sequential 

way in which TC performs log entry pushes to participants).

• Can be optimized to do 2PC for batches of log entries -- 
when would you need to push a batch???
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Problems with Mock
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1. NOT fault tolerant (but durable):
– Because TC must wait for all replicas to reply that they are going to 

perform the update, the coordinator needs to block every time one 
replica is slow, disconnected, or dead.

– But the mock does provide more durability than 2PC across shards.

2. When the coordinator dies, someone else must become 
coordinator.  Yet, we must have only one (at most) coordinator, 
otherwise different coordinators may impose different orders on 
log entries.  This is called leader election and is not addressed in 
2PC, which assumes a static coordinator!



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consensus protocols
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Consensus Protocols

• Require only a majority of nodes to be up at any time in 
order to make progress.

• Similar to 2PC, but instead of waiting for all participants to 
respond, they wait for a majority of the replicas to respond.
– In a fail-stop failure model (i.e., nodes are not malicious),   

the majority needed is a simple majority; i.e., one can tolerate 
f simultaneous failures with 2f+1 replicas.

– In a malicious failure model, one needs a super-majority,  
i.e.,  one can tolerate f simultaneous failures with 3f+1 replicas.
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Simple Majorities
• There cannot exist two majorities in a given group at the same time.

– This means that if a node obtains OKs from a majority of nodes – say in a first 
phase like 2PC’s – then another node (e.g., another simultaneous coordinator)       
is guaranteed to not have obtained OKs from a majority of the nodes.

– This lets us replace a dead Coordinator with a new one without introducing 
inconsistencies. That’s how we address the leader election problem. 

• Any two majorities of a group will overlap in at least one node.
– This means that if an old Coordinator obtained OKs from a majority of the nodes, 

then sent COMMIT messages that were received by a majority of the nodes, and 
subsequently crashed before it could inform the other nodes of the COMMIT 
outcome, then a new Coordinator that is “elected” subsequently, will learn about   
the outcome by talking to any (other) majority, and so it can continue the commit 
process that the first (now dead) Coordinator began.
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Paxos and RAFT

• Paxos [Lamport-1998]: Original protocol. Solves the basic 
consensus problem as defined in the Agreement lecture 
(consensus on the value of a write-once register, with the 
consistency, validity, and termination requirements).

• RAFT [Ongaro-Ousterhout-2014]: More recent, operates at 
a higher level of abstraction,   and shows very clearly how 
to replicate the WAL (for example) to implement 
fault-tolerant transactions. 

• We’ll focus on Paxos, and its extension to WAL.
20
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Paxos

21



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Paxos

• Widely used in industry to solve various instances of 
consensus that occur in DS:
– Google: Chubby (Paxos-based distributed lock service), 

Spanner (transactional storage) 
– Yahoo: Zookeeper (Paxos-based distributed lock service) 
– Open source: libpaxos (Paxos-based atomic broadcast) 
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Gist

23

A B

C

x=null x=null

x=null

• Paxos solves the generic problem of consensus: N nodes 
want to agree on the value of a write-once register.



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist
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A B

C

x=V x=V

x=V

• Paxos solves the generic problem of consensus: N nodes 
want to agree on the value of a write-once register.
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Gist
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• Paxos solves the generic problem of consensus: N nodes 
want to agree on the value of a write-once register.

• The protocol guarantees:
1. consistency (all non-faulty nodes choose the same value);
2. validity (the chosen value was proposed by a proposer).

• The protocol is likely to achieve but does not guarantee:
3.   termination (eventually, a value is chosen).  
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Gist
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A B

C

Proposer

Acceptors

• All nodes can fulfill two roles: 
– Proposers: issue a series of rounds of 

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from 

proposers according to a specific protocol. 
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Gist
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A B

C

Proposer

Acceptors

Proposer

• All nodes can fulfill two roles: 
– Proposers: issue a series of rounds of 

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from 

proposers according to a specific protocol. 
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Gist

• All nodes can fulfill two roles: 
– Proposers: issue a series of rounds of 

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from 

proposers according to a specific protocol. 

• A value is chosen when a majority of 
acceptors have accepted it.

• A proposer announces a chosen value or tries 
again if it’s failed to converge on a value. 

28
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Proposer

Acceptors

Proposer
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The Protocol

• State maintained by each node:
– Np: highest proposal number seen to date (initially nil); 
– Na: highest accepted proposal (initially nil);
– Va: the value of the highest accepted proposal (initially nil);
– Done: whether consensus has been reached (initially false).

• Protocol has three phases:
– Propose
– Accept
– Decide

29
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Phase 1: Propose

• @Proposer: (assumes Done=false)
– Choose a new proposal number, N > Np.
– Send <PROPOSE, N> to acceptors (including himself).
– Wait until a majority of acceptors return PROPOSE-OK. If time out, 

back off and restart Paxos. 

• @Acceptor: Upon receiving a <PROPOSE, N> request:
– If N > Np then:

• Update Np = N
• Reply <PROPOSE-OK, Na, Va>
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Phase 2: Accept

• @Proposer: (assumes PROPOSE-OKs from majority acceptors) 
– Choose V := the value of the highest-numbered proposal among            

those returned by the acceptors (or any value if no Va returned).
– Send <ACCEPT, N, V> to all acceptors (including himself).
– Wait until a majority of acceptors return ACCEPT-OK.  If time out, 

back off and restart Paxos. 

• @Acceptor: Upon receiving an <ACCEPT, N, V>:
– If N >= Np then:

• Update Np = N, Na = N, Va = V
• Reply <ACCEPT-OK>
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Phase 3: Decide

• @Proposer: (assumes ACCEPT-OKs from majority of acceptors):
– Send Done to client, signaling that consensus has been reached.
– Send <DECIDE, N, V> to all acceptors (including himself).  [Can keep 

resending until all reply, but realize that acceptors can learn decision from 
other proposers too.]

• @Acceptor: Upon receiving a <DECIDE, N, V>
– If N >= Np then:

• Set Np = N, Na = N, Va = V
• Reply <DECIDE-OK>
• Set Done = true and terminate Paxos.
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Examples

• Paxos is best understood by first reading protocol, then 
examples, then reading protocol, then examples, …

• We’ll go through several examples next.

• Please re-read protocol at home and construct your own 
examples, questioning the protocol.  It’s the best way to 
understand it!
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propose,1:N1

N0 N1
(proposer)

N2

np=0:N1
na = va = null

np=0:N0
na = va = 
null

np= 1:N1
na = null
va = null

propose,1:N1

ok, 1:N1, na =va=null np = 1:N1
na = null
va = null

np=0:N2
na = va = null

accept,1:N1, V accept,1:N1, V
np=1:N1
na = 1:N1
va = V

np = 1:N1
na = 1:N1
va = V

ok, 1:N1

decide, V decide, V

1. Single Proposer

ok, 1:N1, na =va=null 

ok,1:N1
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propose,1
P1 A2 P2

propose,2

2. With Concurrent Proposers
A1 A3

ok, 1, na=va=null

ok, 2, na=va=null

accept, 1, V

reject, 2 accept,2, V’

ok, 2

35

consensus is 
reached, value 
is V’; return 
to client.
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propose,1
P1 A2 P2

3. With Sequential Proposers
A1 A3

ok, 1, na=va=null

accept, 1, V

ok, 1 propose,2

ok, 2, na=1, va=V

accept, 2, V

ok, 2

36

V remains the 
consensus value.

consensus is 
reached, 
value is V; 
return to 
client.
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propose,1
P1 A2 P2

4. With Failures
A1 A3

ok, 1, na= va=null

accept, 1, V

ok, 1

propose,2

ok, 2, na=va=null
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consensus is 
reached, 
value is V; 
return to 
client.

no majority 
reached; back off 
and try again 
(unless P2 learns 
the chosen value in 
the meantime 
thanks to P1’s 
decision messages).
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propose,1
P1 A2 P2

5. With Failures
A1 A3

ok, 1, na= va=null

accept, 1, V

reject, 2

propose,2

ok, 2, na=va=null

accept, 2, V’

ok, 2, na=va=null

ok, 1

ok, 2

38

consensus is 
not yet 
reached; P1 
backs off 
for a while.

consensus is 
reached; V’ is the 
chosen value; A1 
will find out later 
when it manages 
to get the Decide 
message from P2.
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propose,1
P1 A2 P2

6. With Failures
A1 A3

accept, 1, V

reject, 2

propose,2

ok, 2, na=va=null

accept, 2, V’

ok, 2, na=va=null

ok, 1

ok, 2

ok, 1, na= va=null

39

consensus is 
not yet 
reached; P1 
backs off 
for a while.

as before, but 
P2’s majorities 
are different in 
the two phases.  
Yet, consensus 
is still reached 
on value V’.
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propose,1
P1 A2 P2

7. With Failures
A1 A3

propose,2

propose, 3

accept-ok, 1

accept-ok, 2

(skip two 
exchanges)

P3

…

…
 

accept-ok, 3

…

40

P1 reaches 
consensus; 
chosen value is 
P1’s default, V.

P2 reaches 
consensus; 
chosen value 
is still V, 
thanks to A2.

P3 reaches 
consensus; 
chosen value 
is still V, 
thanks to A3.
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Paxos Is Fault-Tolerant
• A Paxos run consists of one or more rounds conducted by different 

proposers.  New proposers continue the work of previous proposers.

• If one proposer dies, another one times out and offers to be the 
proposer.  Because of how the protocol is structured (that value 
choice based on highest-Na), the new proposer will continue 
propagating a formerly chosen value.

• A Paxos run is successful if at least a majority of the nodes is up and 
accepts the proposal.

• But, there are degenerate cases where Paxos doesn’t finish (next 
slide).  These can be made unlikely w/ random back-offs. 
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propose,n
P1 A2 P2A1 A3

ok, n, na=va=null

accept, n, V

reject, n+1

propose,n+1

ok, n+1, na=va=null

accept, n+1, V’

reject, n+2

ok,n+2,na=va=null

propose,n+2

Dueling proposers.
Solution: random 
backoff.42
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Extending to Read-Write: Multi-Paxos

• Preceding protocol solves the basic problem of consensus     
on write-once registers.

• Real consensus problems don’t look like that because real  
data structures one wishes to replicate are rarely write-once.

• But many useful data structures can be reduced to a set of 
write-once registers.

• Example: The WAL is a long vector of write-once registers.
– Each index in the log (record #1, #2, …) is written once and   

never updated.
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Example: Replicating WAL
• You start out with an empty log, i.e., no value 

is assigned to any of the indexes.

• For each index, you use Paxos to ensure the 
replicas agree on what value (record, such as 
begin, update, commit, prepare,…) is 
recorded at a particular index in the log.

• When a replica has a record to append to the 
log, it picks an unused index and proposes to 
become a proposer.  If no acceptor returns a 
value for that index, the proposer can use its 
record as the value. 44



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Inefficiencies of Multi-Paxos

• Preceding description of multi-paxos is inefficient:
– Clients are allowed to interact with any replica, so proposers 

may duel, causes a lot of useless work.
– Each time a replica becomes a proposer, it needs to run the 

first phase (PREPARE) to get agreement on N.

• The solution is to have a stable Leader, similar to 2PC 
except the leader can change seamlessly if needed.
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Leader-based Multi-Paxos

• Say proposer P completes first phase.  Then, P can assume the 
role of a Leader for a predefined period of time (lease time).

• Any replica that is not a leader rejects client requests and 
forwards the client to the node it believes is the leader.

• P interacts with clients and fast-tracks its proposals from the 
ACCEPT phase.

• Changing the Leader is achieved with leaderless multi-Paxos, 
with versions of the leader being indexed by a “view number.”
– A replica will reject a Leader change until it hasn’t heard from 

former leader for a predefined amount of time (lease time).
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Lease

• Gives a node permission to act in a certain role for a period of 
time (real time!), with the possibility of renewal in that timeframe.

• Used throughout DSes as an optimization.
– Logical clocks (Np, Na in Paxos) are used for safety/correctness, 

as they don’t raise synchronization challenges.
– Physical time, through leases, is used for optimization.

• Assumption: small clock skew during lease period!
– This is why leases can’t be too long!  
– E.g., 30-second leases are typical.
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Next Time

• Applications of Paxos (and 2PC) in real life:
– Spanner: Google’s geo-distributed, fault-tolerant,           

scalable ACID database.
– Chubby: Google’s lock service.
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Key Papers

• [Lamport-1998] Leslie Lamport. The Part-time Parliament. 
In ACM Transactions on Computer Systems, 1998.

• [Lamport-2001] Leslie Lamport. Paxos Made Simple. In 
ACM SIGACT News, 2001.

• [Ongaro-Ousterhout-2014] Diego Ongaro and John 
Ousterhout. In Search of an Understandable Consensus 
Algorithm.  In USENIX ATC, 2014.
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