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Context

« Today, we'll break from the distributed setting to introduce
transactions, a core concept in state management, and
discuss how transactions are implemented in a
single-node system.

« Subsequently, we'll return to the distributed setting and
describe how distributed transactions are implemented.

« As part of that, we will discuss atomic commitment and
consensus protocols.
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Why Transactions?

* A key component in any distributed application is a
(distributed) database that maintains shared state.

« Two challenges of building a non-distributed DB:

— Handling failures: failures are inevitable but they create
the potential for partial computations and correctness of
computations after restart.

— Handling concurrency: concurrency is vital for
performance (e.g., I/O is slow so need to overlap with
computation), but it creates races. Need to use some form
of synchronization to avoid }hose.
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Transaction

Turing-award-winning idea.

Abstraction provided to programmers that encapsulates
a unit of work against a database.

Guarantees that the unit of work is executed atomically
in the face of failures and is isolated from concurrency.
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Transaction API

« Simple but very powerful:

txID = Begin()

// Starts a transaction. Returns a unique ID for the
// transaction.

outcome= Commit(txID)

// Attempts to commit a transaction; returns whether or
// not the commit was successful. If successful, all

// operations 1n the transaction have been applied to the
// DB. If unsuccessful, none of them has been applied.

Abort(txID)

// Cancels all operations of a transaction and erases
// their effects on the DB. Can be invoked by the
// programmer or by the database engine itself.
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Semantics

« By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful guarantees.

* One such set of guarantees is ACID:

— Atomicity: Either all operations in the transaction will
complete successfully (commit outcome), or none of
them will (abort outcome), regardless of failures.

— lIsolation: A transaction’s behavior is not impacted by
the presence of concurrently executing transactions.

— Durability: The effects of committed transactions

survive failures.
:
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Semantics

« By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful semantics.

* One such set of guarantees is ACID:
— Atomicity: Either all operations in the transaction will

_ hide
complete successfully (commit outcome), or none of failures
them will (abort outcome), regardless of failures.

— Isolation: A transaction’s behavior is not impacted by hides
the presence of concurrently executing transactions. concurrency

— Durability: The effects of committed transactions

survive failures.
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Example
TRANSFER(src, dst, x) REPORT_ SUM(accl, acc2)
01 src_bal = Read(src) 01 accl bal = Read(accl)
02 if (src_bal > x): 02 acc2 bal = Read(acc2)
03 src_bal -=x 03  Print(accl _bal + acc2 bal)
04 Write(src_bal, src)
05 dst bal = Read(dst)
06 dst bal +=x
07 Write(dst bal, dst)
Invocation: TRANSFER(A, B, 50) Invocation: PRINT SUM(A, B)

Without transactions: What could go wrong? Think of crashes or inopportune
interleavings between concurrent T%ANSFER and REPORT SUM processes.
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Example
TRANSFER(src, dst, x) REPORT_ SUM(accl, acc2)
01 src_bal = Read(src) 01 accl bal = Read(accl)
02 if (src_bal > x): 02 acc2 bal = Read(acc2)
03 src_bal -=x 03  Print(accl _bal + acc2 bal)
04 Write(src_bal, src)
05 dst bal = Read(dst)
06 dst bal +=x
07 Write(dst bal, dst)
Invocation: TRANSFER(A, B, 50) Invocation: PRINT SUM(A, B)

With transactions: How to fix these challenges with transactions?
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Example

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09
10
11

txID = Begin()
src_bal = Read(txID, src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst bal = Read(txID, dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID)
Abort(txID)
return FALSE

REPORT_ SUM(accl, acc2)

00
01
02
03
04

txID = Begin()

accl bal = Read(txID, accl)
acc2_bal = Read(txID, acc2)
Print(accl bal + acc2 bal)
Commit(txID)
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Implementing Transactions
(Single Node)

* Atomicity and Durability:
— Operations included in a transaction either all succeed or none succeed

despite temporary failures of the process/machine running the DB
(assume disk doesn’t fail!). If they succeed, they persist despite failures.

— Key mechanism is write-ahead logging: log to disk sufficient information
about each operation before you apply it to the database, such that in the
event of a failure in the middle of a transaction, you can undo the effects
of its operations on the database.

e |solation:
— Operations included in a transaction all witness the database in a
coherent state, independent of other transactions.

— Key mechanism is locking: DB acquires locks on all rows read or written

and maintains them until the end of the transaction.
12
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Mechanism Descriptions
[Franklin-1992]

 Two-phase locking (2PL):
https://columbia.qgithub.io/ds1-class/lectures/06-local-tran

sactions-2pl.pdf.

 Write-ahead logging (WAL):
https://columbia.qgithub.io/ds1-class/lectures/06-local-tran
sactions-wal.pdf.



https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
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Two-Phase Locking (2PL)
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Lock-Based Concurrency Control

TRANSFER(src, dst, x)

00 txID = Begin()

01 src_bal = Read(txID, src)
02 if (src_bal > x):

03 src_bal -=x

04 Write(txID, src_bal, src)
05 dst bal = Read(txID, dst)
06 dst bal +=x

07 Write(txID, dst bal, dst)
09 return Commit(txID)

10 Abort(txID)

11 return FALSE

REPORT_ SUM(accl, acc2)

00
01
02
03
04

txID = Begin()

accl bal = Read(txID, accl)
acc2_bal = Read(txID, acc2)
Print(accl bal + acc2 bal)
Commit(txID)

Questions: What locks to
take, when, and for how
long to keep them?
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Option 1: Global Lock for Entire

Transaction
TRANSFER(src, dst, x) REPORT SUM(accl, acc2)
00 txID = Begin() «— lock(table) 00 txID = Begin() «— lock(table)
01 src_bal = Read(txID, src) 01 accl bal = Read(txID, accl)
02 if (src_bal > x): 02 acc2 bal = Read(txID, acc2)
03 src_bal -=x 03  Print(accl _bal + acc2 bal)
04 Write(txID, src_bal, src) 04 Commit(txID) «— unlock(table)

05 dst bal = Read(txID, dst)
06 dst bal +=x

07  Write(txID, dst_bal, dst) Problem?
09 return Commit(txID) <« unlock(table)
10 Abort(txID) < unlock(table)

11 return FALSE

16
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Option 1: Global Lock for Entire

Transaction
TRANSFER(src, dst, x) REPORT SUM(accl, acc2)
00 txID = Begin() «— lock(table) 00 txID = Begin() «— lock(table)
01 src_bal = Read(txID, src) 01 accl bal = Read(txID, accl)
02 if (src_bal > x): 02 acc2 bal = Read(txID, acc2)
03 src_bal -=x 03  Print(accl _bal + acc2 bal)
04 Write(txID, src_bal, src) 04 Commit(txID) «— unlock(table)

05 dst bal = Read(txID, dst)
06 dst bal +=x

07  Write(txID, dst_bal, dst) Problem: poor performance.
09 return Commit(txID) « unlock(table)  Serializes all transactions
10 Abort(txID) «— unlock(table) against that table, even if

11 return FALSE they don’t conflict.
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Option 2: Row-Level Locks,
Release After Access

TRANSFER(src, dst, x) Problem?
00 txID = Begin()

01 src_bal = Read(txID, src) « lock(src)

02 if (src_bal > x):

03 src_bal -=x

04 Write(txID, src_bal, src) «— unlock(src)
05 dst bal = Read(txID, dst) lock(dst)
06 dst bal +=x

07 Write(txID, dst bal, dst) <« unlock(dst)
09 return Commit(txID)

10 Abort(txID)

11 return FALSE
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Option 2: Row-Level Locks,
Release After Access

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09
10
11

txID = Begin()
src_bal = Read(txID, src) «— lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src) «— unlock(src)
dst bal = Read(txID, dst) lock(dst
dst bal +=x
Write(txID, dst bal, dst) <« unlock(dst)
return Commit(txID)
Abort(txID)
return FALSE

Problem: insufficient isolation.
* Allows other transactions to
read src before dst is updated.

REPORT SUM(src, dst)
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Two-Phase Locking (2PL)

Phase 1: acquire locks
Phase 2: release locks

You cannot get more locks

after you release one.

— Typically implemented
by her releasing locks

automatically at end of
commit()/abort().

20

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09

txID = Begin()
src_bal = Read(txID, src) < lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst_bal = Read(txID, dst) « |ock(dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID) <« unlock(src,dst)

10 Abort(txID) «— unlock(src,dst)
11 return FALSE
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Two-Phase Locking (2PL)

Phase 1: acquire locks
Phase 2: release locks

You cannot get more locks

after you release one.

— Typically implemented
by her releasing locks

automatically at end of
commit()/abort().

Problems?

21

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09

txID = Begin()
src_bal = Read(txID, src) < lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst_bal = Read(txID, dst) « |ock(dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID) <« unlock(src,dst)

10 Abort(txID) «— unlock(src,dst)
11 return FALSE
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2PL Can Lead to Deadlocks

tx1: lock(foo) tx2: lock(bar)
tx1: lock(bar) tx2: lock(foo)

* tx1 might get the lock for foo, then tx2 gets lock for bar,
then both transactions wait trying to get the other lock.

22
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Preventing Deadlock

Option 1: Each transaction gets all its locks at once.
— Not always possible (e.g., think foreign key-based navigation
in a DB system: rows to lock are determined at runtime).
- Option 2: Each transaction gets its locks in predefined order.
— As before, not always possible.

- Typically: detect deadlock and abort some transactions as
needed to break the deadlock.

\S]
(8]
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Deadlock Detection and Resolution

Construct a waits-for graph:
— Each vertex in the graph is a transaction.
— Thereisanedge T1— T2 if T1 is waiting for a lock T2 holds.

There is a deadlock iff there is a cycle in the waits-for graph.

To resolve, the database unilaterally calls Abort() on one
or a few ongoing transactions to break the cycle.

24
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To Remember

- Remember this point: For concurrently control, a

database may decide on its own to kill ongoing client
transactions!

- S0 Abort is a really critical function, which helps

address both concurrency control issues and
atomicity issues.

- But how exactly to Abort()? Answer: WAL.
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Write-Ahead Logging (WAL)

26
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WAL Slides

- https://columbia.qgithub.io/ds1-class/lectures/06-local-trans
actions-wal.pdf.

27
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Next Classes

* Return to the distributed setting to discuss:

— How to implement distributed transactions in a sharded
database (for scalability): atomic commitment protocols.

— How to implement distributed transactions in a replicated
database (for fault tolerance): consensus protocols.

— Several case studies on how to leverage these protocols
in practice: Spanner, Chubby, Bigtable.
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Key Papers

 [Franklin-1992] Michael Franklin. Concurrency Control and
Recovery.” In Proceedings of ACM SIGMOD, 1992.
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