Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu

l

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TRANSACTIONS: APRIMER

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

« Today, we'll break from the distributed setting to introduce
transactions, a core concept in state management, and
discuss how transactions are implemented in a
single-node system.

« Subsequently, we'll return to the distributed setting and
describe how distributed transactions are implemented.

« As part of that, we will discuss atomic commitment and
consensus protocols.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Why Transactions?

* A key component in any distributed application is a
(distributed) database that maintains shared state.

« Two challenges of building a non-distributed DB:

— Handling failures: failures are inevitable but they create
the potential for partial computations and correctness of
computations after restart.

— Handling concurrency: concurrency is vital for
performance (e.g., I/O is slow so need to overlap with
computation), but it creates races. Need to use some form
of synchronization to avoid }hose.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Transaction

Turing-award-winning idea.

Abstraction provided to programmers that encapsulates
a unit of work against a database.

Guarantees that the unit of work is executed atomically
in the face of failures and is isolated from concurrency.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Transaction API

« Simple but very powerful:

txID = Begin()

// Starts a transaction. Returns a unique ID for the
// transaction.

outcome= Commit(txID)

// Attempts to commit a transaction; returns whether or
// not the commit was successful. If successful, all

// operations 1n the transaction have been applied to the
// DB. If unsuccessful, none of them has been applied.

Abort(txID)

// Cancels all operations of a transaction and erases
// their effects on the DB. Can be invoked by the
// programmer or by the database engine itself.

6

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Semantics

« By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful guarantees.

* One such set of guarantees is ACID:

— Atomicity: Either all operations in the transaction will
complete successfully (commit outcome), or none of
them will (abort outcome), regardless of failures.

— lIsolation: A transaction’s behavior is not impacted by
the presence of concurrently executing transactions.

— Durability: The effects of committed transactions

survive failures.
:

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Semantics

« By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful semantics.

* One such set of guarantees is ACID:
— Atomicity: Either all operations in the transaction will

_ hide
complete successfully (commit outcome), or none of failures
them will (abort outcome), regardless of failures.

— Isolation: A transaction’s behavior is not impacted by hides
the presence of concurrently executing transactions. concurrency

— Durability: The effects of committed transactions

survive failures.
8

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
TRANSFER(src, dst, x) REPORT_ SUM(accl, acc2)
01 src_bal = Read(src) 01 accl bal = Read(accl)
02 if (src_bal > x): 02 acc2 bal = Read(acc2)
03 src_bal -=x 03 Print(accl _bal + acc2 bal)
04 Write(src_bal, src)
05 dst bal = Read(dst)
06 dst bal +=x
07 Write(dst bal, dst)
Invocation: TRANSFER(A, B, 50) Invocation: PRINT SUM(A, B)

Without transactions: What could go wrong? Think of crashes or inopportune
interleavings between concurrent T%ANSFER and REPORT SUM processes.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
TRANSFER(src, dst, x) REPORT_ SUM(accl, acc2)
01 src_bal = Read(src) 01 accl bal = Read(accl)
02 if (src_bal > x): 02 acc2 bal = Read(acc2)
03 src_bal -=x 03 Print(accl _bal + acc2 bal)
04 Write(src_bal, src)
05 dst bal = Read(dst)
06 dst bal +=x
07 Write(dst bal, dst)
Invocation: TRANSFER(A, B, 50) Invocation: PRINT SUM(A, B)

With transactions: How to fix these challenges with transactions?

10

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09
10
11

txID = Begin()
src_bal = Read(txID, src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst bal = Read(txID, dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID)
Abort(txID)
return FALSE

REPORT_ SUM(accl, acc2)

00
01
02
03
04

txID = Begin()

accl bal = Read(txID, accl)
acc2_bal = Read(txID, acc2)
Print(accl bal + acc2 bal)
Commit(txID)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Implementing Transactions
(Single Node)

* Atomicity and Durability:
— Operations included in a transaction either all succeed or none succeed

despite temporary failures of the process/machine running the DB
(assume disk doesn’t fail!). If they succeed, they persist despite failures.

— Key mechanism is write-ahead logging: log to disk sufficient information
about each operation before you apply it to the database, such that in the
event of a failure in the middle of a transaction, you can undo the effects
of its operations on the database.

e |solation:
— Operations included in a transaction all witness the database in a
coherent state, independent of other transactions.

— Key mechanism is locking: DB acquires locks on all rows read or written

and maintains them until the end of the transaction.
12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mechanism Descriptions
[Franklin-1992]

 Two-phase locking (2PL):
https://columbia.qgithub.io/ds1-class/lectures/06-local-tran

sactions-2pl.pdf.

 Write-ahead logging (WAL):
https://columbia.qgithub.io/ds1-class/lectures/06-local-tran
sactions-wal.pdf.

https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lock-Based Concurrency Control

TRANSFER(src, dst, x)

00 txID = Begin()

01 src_bal = Read(txID, src)
02 if (src_bal > x):

03 src_bal -=x

04 Write(txID, src_bal, src)
05 dst bal = Read(txID, dst)
06 dst bal +=x

07 Write(txID, dst bal, dst)
09 return Commit(txID)

10 Abort(txID)

11 return FALSE

REPORT_ SUM(accl, acc2)

00
01
02
03
04

txID = Begin()

accl bal = Read(txID, accl)
acc2_bal = Read(txID, acc2)
Print(accl bal + acc2 bal)
Commit(txID)

Questions: What locks to
take, when, and for how
long to keep them?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 1: Global Lock for Entire

Transaction
TRANSFER(src, dst, x) REPORT SUM(accl, acc2)
00 txID = Begin() «— lock(table) 00 txID = Begin() «— lock(table)
01 src_bal = Read(txID, src) 01 accl bal = Read(txID, accl)
02 if (src_bal > x): 02 acc2 bal = Read(txID, acc2)
03 src_bal -=x 03 Print(accl _bal + acc2 bal)
04 Write(txID, src_bal, src) 04 Commit(txID) «— unlock(table)

05 dst bal = Read(txID, dst)
06 dst bal +=x

07 Write(txID, dst_bal, dst) Problem?
09 return Commit(txID) <« unlock(table)
10 Abort(txID) < unlock(table)

11 return FALSE

16

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 1: Global Lock for Entire

Transaction
TRANSFER(src, dst, x) REPORT SUM(accl, acc2)
00 txID = Begin() «— lock(table) 00 txID = Begin() «— lock(table)
01 src_bal = Read(txID, src) 01 accl bal = Read(txID, accl)
02 if (src_bal > x): 02 acc2 bal = Read(txID, acc2)
03 src_bal -=x 03 Print(accl _bal + acc2 bal)
04 Write(txID, src_bal, src) 04 Commit(txID) «— unlock(table)

05 dst bal = Read(txID, dst)
06 dst bal +=x

07 Write(txID, dst_bal, dst) Problem: poor performance.
09 return Commit(txID) « unlock(table) Serializes all transactions
10 Abort(txID) «— unlock(table) against that table, even if

11 return FALSE they don’t conflict.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Row-Level Locks,
Release After Access

TRANSFER(src, dst, x) Problem?
00 txID = Begin()

01 src_bal = Read(txID, src) « lock(src)

02 if (src_bal > x):

03 src_bal -=x

04 Write(txID, src_bal, src) «— unlock(src)
05 dst bal = Read(txID, dst) lock(dst)
06 dst bal +=x

07 Write(txID, dst bal, dst) <« unlock(dst)
09 return Commit(txID)

10 Abort(txID)

11 return FALSE

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Row-Level Locks,
Release After Access

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09
10
11

txID = Begin()
src_bal = Read(txID, src) «— lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src) «— unlock(src)
dst bal = Read(txID, dst) lock(dst
dst bal +=x
Write(txID, dst bal, dst) <« unlock(dst)
return Commit(txID)
Abort(txID)
return FALSE

Problem: insufficient isolation.
* Allows other transactions to
read src before dst is updated.

REPORT SUM(src, dst)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

Phase 1: acquire locks
Phase 2: release locks

You cannot get more locks

after you release one.

— Typically implemented
by her releasing locks

automatically at end of
commit()/abort().

20

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09

txID = Begin()
src_bal = Read(txID, src) < lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst_bal = Read(txID, dst) « |ock(dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID) <« unlock(src,dst)

10 Abort(txID) «— unlock(src,dst)
11 return FALSE

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

Phase 1: acquire locks
Phase 2: release locks

You cannot get more locks

after you release one.

— Typically implemented
by her releasing locks

automatically at end of
commit()/abort().

Problems?

21

TRANSFER(src, dst, x)

00
01
02
03
04
05
06
07
09

txID = Begin()
src_bal = Read(txID, src) < lock(src)
if (src_bal > x):
src_bal -=x
Write(txID, src_bal, src)
dst_bal = Read(txID, dst) « |ock(dst)
dst bal +=x
Write(txID, dst bal, dst)
return Commit(txID) <« unlock(src,dst)

10 Abort(txID) «— unlock(src,dst)
11 return FALSE

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PL Can Lead to Deadlocks

tx1: lock(foo) tx2: lock(bar)
tx1: lock(bar) tx2: lock(foo)

* tx1 might get the lock for foo, then tx2 gets lock for bar,
then both transactions wait trying to get the other lock.

22

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Preventing Deadlock

Option 1: Each transaction gets all its locks at once.
— Not always possible (e.g., think foreign key-based navigation
in a DB system: rows to lock are determined at runtime).
- Option 2: Each transaction gets its locks in predefined order.
— As before, not always possible.

- Typically: detect deadlock and abort some transactions as
needed to break the deadlock.

\S]
(8]

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Deadlock Detection and Resolution

Construct a waits-for graph:
— Each vertex in the graph is a transaction.
— Thereisanedge T1— T2 if T1 is waiting for a lock T2 holds.

There is a deadlock iff there is a cycle in the waits-for graph.

To resolve, the database unilaterally calls Abort() on one
or a few ongoing transactions to break the cycle.

24

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

To Remember

- Remember this point: For concurrently control, a

database may decide on its own to kill ongoing client
transactions!

- S0 Abort is a really critical function, which helps

address both concurrency control issues and
atomicity issues.

- But how exactly to Abort()? Answer: WAL.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Write-Ahead Logging (WAL)

26

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

WAL Slides

- https://columbia.qgithub.io/ds1-class/lectures/06-local-trans
actions-wal.pdf.

27

https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Next Classes

* Return to the distributed setting to discuss:

— How to implement distributed transactions in a sharded
database (for scalability): atomic commitment protocols.

— How to implement distributed transactions in a replicated
database (for fault tolerance): consensus protocols.

— Several case studies on how to leverage these protocols
in practice: Spanner, Chubby, Bigtable.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

 [Franklin-1992] Michael Franklin. Concurrency Control and
Recovery.” In Proceedings of ACM SIGMOD, 1992.

29

