
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Remote Procedure Calls (RPC)

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• We discussed challenges of achieving scalability, fault
tolerance, semantics, performance in DSes.

• The approach is generally to construct infrastructure
systems that raise the level of abstraction.

• Today we look at the most basic DS abstraction: RPC,
the predominant communication abstraction in a DS.

• RPC already reflects most challenges we talked about.

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: (Part of) Google Infra Stack

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Motivation

5

struct foomsg {
 u_int32_t len;
}
send_foo(int outsock, char* contents) {
 int msglen = sizeof(struct foomsg) +
 strlen(contents);
 char* buf = malloc(msglen);
 struct foomsg* fm = (struct foomsg*)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

• To coordinate, nodes must
communicate.

• Network gives sockets, which
are terrible to program with.

• What are some issues?

Example (code sketch!)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Motivation

• To coordinate, nodes must
communicate.

• Network gives sockets, which
are terrible to program with.

• What are some issues?
– Lots of ugly boilerplate
– Prone to bugs, vulnerabilities
– Portability issues
– Hard to understand/maintain/evolve

6

struct foomsg {
 u_int32_t len;
}
send_foo(int outsock, char* contents) {
 int msglen = sizeof(struct foomsg) +
 strlen(contents);
 char* buf = malloc(msglen);
 struct foomsg* fm = (struct foomsg*)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

Example (code sketch!)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

RPC
(~1984 paper by Birrell, Nelson)

• Idea: Make network communication look like a local
procedure call (LPC).

7

z = fn(x, y)
… do smth with z

fn(x, y) {
 // compute result z
 return z;

}

Caller (Client) Implementation (Server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

RPC

• Idea: Make network communication look like a local
procedure call (LPC).

8

z = fn(x, y)
… do smth with z

fn(x, y) {
 // compute result z
 return z;

}

Implementation (Server)Caller (Client)

librpc librpc

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

RPC Architecture

9
(figure taken from RPC paper by Birrell, Nelson)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Benefits

10

• Easy to use and familiar to any programmer.
• Hides gory network/marshaling details that one would

have to implement if doing, e.g., network-level
communication, byte orders, …

• Supports evolution of the communicating components
independently.

• Allows for efficient packaging of arguments/return vals.
• Authentication support.
• Location independence.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

11

Problems
(or where distribution peeks through the LPC illusion)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

12

• Latency
– LPC: fast; RPC: can be slow.
– So care must be taken when invoking RPCs.

• Pointer transfers
– LPC: caller/callee share address space; RPC: no shared mem.
– RPClib can’t automatically decide what gets serialized and what doesn’t.

• Failures
– LPC: shared fate between caller and callee. RPC: caller and callee can

fail independently (recall DS definition).
– This is the critical challenge in DS and why cannot hide distribution.

Problems
(or where distribution peeks through the LPC illusion)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: ATM

13

ATM Bank

calls withdraw() implements withdraw()

RPC

BREAKOUT

• Breakout activity (5 min): Design an ATM.
– When a person wants to withdraw cash from the ATM, the ATM sends an

RPC to the bank. The bank first checks that the person has enough
money in their account, and if so, deducts the money and confirms with
the ATM. The ATM, in turn, should give the money to the user.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

RPC Semantics

• At least once

• At most once

• Exactly once

14

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

At Least Once

• Semantic: RPC is eventually executed at least once,
but potentially multiple times.

• Implementation:
– Client keeps issuing RPC until gets a response from server.
– If failures (of net/server) are temporary, semantic satisfied.

• Problem: Suitable for some but not other functions.
– Generally, suitable for idempotent operations (issued once vs.

multiple times doesn’t change state).
15

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

At Most Once
• Semantic: RPC is executed zero or

one times, not more.
• Implementation:

– Clients identify their requests (xid).
– Server remembers xids to detect

duplicates and squelch them.

• Problem: server failure at
inopportune time can cause failure
of the semantic. Give examples.

16

if (state[xid] == DONE)
 return r[xid];
x = handler(args)
state[xid] = DONE
response[xid] = x
return x

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Exactly Once

• Semantic: RPC is executed once.
• This is the ideal (it resembles the LPC model most

closely and it’s easiest to understand), but it’s
surprisingly hard to implement.

• The clean solution is to implement the handler() in a
transaction together with state[xid], response[xid]
operations.

17

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Take-Aways

• Even this most basic abstraction in a DS, RPC,
requires a lot of complexity to implement with strong
semantics.

• Strong semantic here means equivalent functionality
to that of the non-DS version of the program.

• Independent failures by different components of a DS
cause these complications through DS stack.

18

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

RPC Libs

• Your HW series includes a basic RPC lib in the skeleton.
• For your other projects/work, you should consider using

a publicly available, popular library.
• We give a few examples here of RPC libs, but there are

many more out there that are worth considering:
https://columbia.github.io/ds1-class/lectures/03-rpc-hand
out.pdf.

19

https://columbia.github.io/ds1-class/lectures/03-rpc-handout.pdf
https://columbia.github.io/ds1-class/lectures/03-rpc-handout.pdf

