
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

MapReduce

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Today: MapReduce
– Analytics programming interface
– Word count example
– Chaining
– Reading/write from/to HDFS
– Dealing with failures

• To read about: Spark
– Resilient Distributed Datasets (RDDs)
– Programming interface
– Transformations and actions

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Large-scale Analytics
• Compute the frequency of

words in a corpus of
documents.

• Count how many times users
have clicked on each of a
(large) set of ads.

• PageRank: Compute the
“importance” of a web page
based on the “importances”
of the pages that link to it.

• ….
4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 1: SQL

5

• Before MapReduce, analytics mostly done in SQL, or manually.

• Example: Count word appearances in a corpus of documents.

• With SQL, the rough query might be:

• Very expressive, convenient to program, but no one knew how
to scale SQL execution!

SELECT COUNT(*)
 FROM (
 SELECT UNNEST(string_to_array(doc_content, ‘ ’)) as word
 FROM Corpus
)
 GROUP BY word

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual

6

• Example: Count word appearances
in a corpus of documents.

Docs

net-
work

M1 M2

M5 M4

M3Mn

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual

7

• Example: Count word appearances
in a corpus of documents.

• Phase 1: Assign documents to
different machines/nodes.
– Each computes a dictionary:

{word: local_freq}.

net-
work

M1 M2

M5 M4

M3Mn

Docs

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual

8

• Example: Count word appearances
in a corpus of documents.

• Phase 1: Assign documents to
different machines/nodes.
– Each computes a dictionary:

{word: local_freq}.
• Phase 2: Nodes exchange

dictionaries (how?) to aggregate
local_freq’s.

Docs

net-
work

M1 M2

M5 M4

M3Mn

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual

9

• Example: Count word appearances
in a corpus of documents.

• Phase 1: Assign documents to
different machines/nodes.
– Each computes a dictionary:

{word: local_freq}.
• Phase 2: Nodes exchange

dictionaries (how?) to aggregate
local_freq’s.
– But how to make this scale??

Docs

net-
work

M1 M2

M5 M4

M3Mn

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual (cont’ed)

10

• Phase 2, Option a: Send all
{word: local_freq} dictionaries to
one node, who aggregates.
– But what if it’s too much

data for one node?

• Phase 2, Option b: Each node
sends (word, local_freq) to a
designated node, e.g., node
with ID hash(word) % N.

net-
work

M1 M2

M5 M4

M3Mn

Docs

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Manual (cont’ed)

11

• Phase 2, Option a: Send all
{word: local_freq} dictionaries to
one node, who aggregates.
– But what if it’s too much

data for one node?

• Phase 2, Option b: Each node
sends (word, local_freq) to a
designated node, e.g., node
with ID hash(word) % N.

net-
work

M1 M2

M5 M4

M3Mn

Docs

We’ve roughly discovered an app-specific version of MapReduce!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 2: Challenges

12

• How to generalize to other
applications?

• How to deal with failures?
• How to deal with slow nodes?
• How to deal with load balancing

(some docs are very large,
others small)?

• How to deal with skew (some
words are very frequent, so
nodes designated to aggregate
them will be pounded)?

• …

net-
work

M1 M2

M5 M4

M3Mn

Docs

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

MapReduce

13

1. Parallelizable programming model
– Applies to a broad class of analytics applications.
– Isn’t as expressive as SQL but it is easier to scale.
– Consists of three phases (only two visible to the programmer), each

intrinsically parallelizable:
• Map: processes input elements independently to emit relevant (key,

value) pairs from each.
• Transparently, the runtime system groups all the values for each key

together: (key, [list of values]).
• Reduce: aggregates all the values for each key to emit a global value

for each key.

2. Scalable, efficient, fault tolerant runtime system
– Addresses preceding challenges (and more).

Technical paper: please read it!

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

How it works

14

• Input: a collection of elements of (key, value) pair type.

• Programmer defines two functions:

– Map(key, value) → 0, 1, or more (key’, value’) pairs
– Reduce(key, value-list) → output

• Execution:
– Apply Map to each input key-value pair, in parallel for different keys.
– Sort emitted (key’, value’) pairs to produce (key’ value’-list) pairs.
– Apply Reduce to each (key’, value’-list) pair, in parallel for different

keys.

• Output is the union of all Reduce invocations’ outputs.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Workflow

15

Reducer

Reducer
Mapper

Mapper

Mapper

read
local
write

system does
remote read, sort

Output
File 0

Output
File 1

writeSplit 0

Split 1

Split 2

Input data
(in a DFS)

Output data
(in a DFS)

Map phase:
extract something you care

about from each record

Reduce phase:
aggregate

Workers Workers
Tmp data
(local FS)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

• We have a directory, which contains many documents.
• The documents contain words separated by whitespace

and punctuation.
• Goal: Count the number of times each distinct word

appears across the files in the directory.

Example: Word count

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Word count with MapReduce

Map(key, value): // key: document ID; value: document content
FOR (each word w IN value)

emit(w, 1);

Reduce(key, value-list): // key: a word; value-list: a list of integers
result = 0;
FOR (each integer v on value-list)

result += v;
emit(key, result);

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Word count with MapReduce

Map(key, value): // key: document ID; value: document content
FOR (each word w IN value)

emit(w, 1);

Reduce(key, value-list): // key: a word; value-list: a list of integers
result = 0;
FOR (each integer v on value-list)

result += v;
emit(key, result);

Expect to be all 1’s, but
“combiners” allow local
summing of
integers with the same
key before passing to
reducers.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Map Phase

• Mapper is given key: document ID; value: document content, say:
(D1,“The teacher went to the store. The store was closed; the
store opens in the morning. The store opens at 9am.”)

• It will emit the following pairs:
<The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store,1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store,1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

• Normally, there will be many documents, hence many Mappers that
emit such pairs in parallel, but for simplicity, let’s say that these are
all the pairs emitted from the Map phase. 19

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Intermediary Phase
• Transparently, the runtime sorts emitted (key, value) pairs by key:

20

<9am, 1>
<at, 1>
<closed, 1>
<in, 1>
<morning, 1>
<opens, 1>
<opens, 1>
<store, 1>
<store,1>
<store, 1>
<store,1>

<teacher, 1>
<the, 1>
<the, 1>
<the, 1>
<the, 1>
<the 1>
<to, 1>
<went, 1>
<was, 1>
<The, 1>

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Intermediary Phase
• Transparently, the runtime sorts emitted (key, value) pairs by key:

21

<9am, 1>
<at, 1>
<closed, 1>
<in, 1>
<morning, 1>
<opens, 1>
<opens, 1>
<store, 1>
<store,1>
<store, 1>
<store,1>

<teacher, 1>
<the, 1>
<the, 1>
<the, 1>
<the, 1>
<the 1>
<to, 1>
<went, 1>
<was, 1>
<The, 1>

Reducer 2Reducer 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

• For each unique key emitted from the Map Phase, function
Reduce(key, value-list) is invoked on Reducer 1 or Reducer 2.

• Across their invocations, these Reducers will emit:

22

Reduce Phase

<9am, 1>
<at, 1>
<closed, 1>
<in, 1>
<morning, 1>
<opens, 2>
<store, 4>

<teacher, 1>
<the, 5>
<to, 1>
<went, 1>
<was, 1>
<The, 1>

Reducer 1 Reducer 2

Output of the entire program

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Chaining MapReduce

• The programming model seems pretty restrictive.

• But quite a few analytics applications can be written with it,
especially with a technique called chaining.

• If the output of reducers is (key, value) pairs, then their output
can be passed onto other Map/Reduce processes.

• This chaining can support a variety of analytics (though
certainly not all types of analytics, e.g., no ML b/c no loops).

23

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Word Frequency

• Suppose instead of word count, we wanted to compute word
frequency: the probability that a word would appear in a document.

• This means computing the fraction of times a word appears, out of
the total number of words in the corpus.

24

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Solution: Chain two MapReduce’s
• First Map/Reduce: Word Count (like before)

– Map: process documents and output <word, 1> pairs.
– Multiple Reducers: emit <word, word_count> for each word.

• Second MapReduce:
– Map: process <word, word_count> and output (1, (word, word_count)).
– 1 Reducer: perform two passes:

• In first pass, sum up all word_count’s to calculate overall_count.
• In second pass calculate fractions and emit multiple <word,

word_count/overall_count>.

• Scalability is not too bad, as first stage’s output is a rather small dictionary
(maximum # of English words with an integer for each). 25

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Recall: Option 2’s Challenges

26

• How to generalize to other applications?
– See original MapReduce paper for more examples.

• How to deal with failures?
• How to deal with slow nodes?
• How to deal with load balancing?
• How to deal with skew?

• The MapReduce runtime tries to hide these challenges as
much as possible. We’ll talk about a few of the performance
and fault tolerance challenges here.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Architecture

27

Reducer

Reducer
Mapper

Mapper

Mapper

read
local
write

system does
remote read, sort

Output
File 0

Output
File 1

writeSplit 0

Split 1

Split 2

Input data
(in a DFS)

Output data
(in a DFS)

Tmp data
(local FS)

Master
assign
map
task

assign
reduce
task

DFS
Data

Nodes

DFS
Data

Nodes

DFS
Name
Server

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Data locality for performance

• Master scheduling policy:
– Asks DFS for locations of replicas of input file blocks.
– Map tasks are scheduled so DFS input block replica are

on the same machine or on the same rack.

• Effect: Thousands of machines read input at local
speed.
– Don’t need to transfer input data all over the cluster over

the network: eliminate network bottleneck!

28

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Heartbeats & replication for fault tolerance

• Failures are the norm in data centers.
• Worker failure:

– Master detects if workers failed by periodically pinging
them (this is called a “heartbeat”).

– Re-execute in-progress map/reduce tasks.
• Master failure:

– Initially, was single point of failure; Resume from Execution
Log. Subsequent versions used replication and consensus.

• Effect: From Google’s paper: once, a Map/Reduce job lost 1600 of
1800 machines, but it still finished fine.

29

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Redundant execution for performance

• Slow workers or stragglers significantly lengthen completion time.

• Slowest worker can determine the total latency!
– Other jobs consuming resources on machine.
– Bad disks with errors transfer data very slowly.
– This is why many systems measure 99th percentile latency.

• Solution: spawn backup copies of tasks.
– Whichever one finishes first "wins.”
– I.e., treat slow executions as failed executions!

30

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Take-Aways

• MapReduce is a programming model and runtime for scalable,
fault tolerant, and efficient analytics.
– Well, some types of analytics, it’s not very expressive.

• It hides common at-scale challenges under convenient abstractions.
– Programmers need only implement Map and Reduce and the system

takes care of running those at scale on lots of data.
– Failures raise semantic/performance challenges for MapReduce, which

it typically handles through redundancy.
• There exist open-source implementations, including Hadoop, Flink.
• Spark, a popular data analytics framework, also supports

MapReduce but also a wider range of programming models.
31

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Acknowledgement

• Slides prepared based on Asaf Cidon’s 2020 DS-1
invited lecture.

32

https://systems.cs.columbia.edu/ds1-class/lectures/10-map-reduce-Asaf-Cidon-guest-lecture.pdf

