
COMS 4113 Homeworks
Sida Huang



Agenda

● Overview of homeworks (deadlines, grading, related topics, difficulty)

● Introduction to Go



Homeworks
8 Homeworks in total (excluded HW0).

Homework Submission Deadline Weights

HW0 M 01/24 (2 days!) 0 (but required)

HW1 Tu 02/01 (1 week) 10%

HW2a Tu 02/15 (2 weeks) 10%

HW2b Tu 02/22 (1 week) 10%

HW3a Tu 03/08 (2 weeks) 10%

HW3b Tu 03/22 (1 week) 10%

HW4a Tu 04/05 (2 weeks) 10%

HW4b F 04/15 (1 week + 3 days) 10%

Quiz F 04/22 (1 week) 20%

HW5 Tu 05/10 (2 weeks + 2 days) 10%



Related Topics

Homework Project Related Topics

HW1 MapReduce MapReduce, RPC

HW2 Primary/Backup Server Fault Tolerant

HW3 Paxos and KV Database Consensus, Paxos, 
Availability

HW4 Sharded KV Database Scalability, Paxos, Atomic 
commitment

HW5 Model Checking Paxos Testing & Model Checking



Difficulty
● HW1 < HW2 < HW3 < HW4 ≈ HW5

● Part a < Part b

Tips

● Read papers and understand the protocol before coding.

● Frequently print your results when debugging a distributed system.

● Start your part b before the deadline of part a.

● Get familiar with Go when working on HW1.

● Reference: 5 - 15 hours a week (coding & debugging). 



Grading
● Unit tests are used to grade your assignments.

● Unit tests in the same homework have the same scores (if 10 unit tests, then 

each contribute to 1.25%).

● Each unit tests will be run 50 times. Every time a unit test fails, the score of 

this unit test will be multiplied by 0.9.

● Grading machines are run in Linux with Go version of 1.13.

#fails 0 1 2 3 4 5 6 7 8 25

score 100% 90% 81% 73% 66% 59% 53% 48% 43% 7%



How to test your code
● Run unit tests at least 50 times, maybe on different machines

● The result is not deterministic (especially for HW2-4), due to goroutine/thread 

scheduling

● Passing tests 50 times does not mean your code is correct, and you code 

may still fail on our grading machine!

● We’ll not add hidden unit tests!



Go
● Statically typed

● Garbage collection

● CSP-style concurrency

● More and more popular: Docker, etcd, ...

● Do not panic; Go is much simpler than C/C++, when you get familiar with the Go’s 

syntax.



MapReduce

From the MapReduce paper (link)

1. Split the file 
in M chunks.

Define Map 
and Reduce 
Functions.

2. Master 
assigns M Map 
jobs to workers. 
Output will be 
partitioned by 
intermediate 
keys. 

4. Master assigns 
R Reduce jobs to 
workers, tell them 
the locations of 
intermediate files.

3. There are MxR 
intermediate results 
from Map phases. 
Their location are 
reported to Master.

5. Reduce jobs 
output R final 
outputs.

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf


MapReduce Example: word count
Split file: input-1.txt, input-2.txt, ..., input-m.txt

Map Phase: "..., a dog, a cat ..." => {"a": ["1", "1"], "dog": ["1"], "cat": ["1"], ...}

Intermediate files: file-1-1.txt {"a": ["1", "1"], "cat": ["1"], ...}, file-1-2.txt {"dog": ["1"]}

Reduce Phase: {"a": ["1", "1"], "cat": ["1"], ...}, {"a": ["1", "1", "1"], "apple": ["1", "1"]} => 

{"a": "5"}, {"apple": "2"}, {"cat": "1"}, ...

Output: output-1.txt, output-2.txt, ..., output-r.txt



How to start?
1. Start with common.go. 
Get familiar with the RPC signature.

RPC 
exposed by 
Worker

RPC 
exposed by 
Master

2. Understand the code in worker.go 
and logic in mapreduce.go.



How to start?

3. Implement the Master following the protocol from the paper. You need to write in both 
master.go and mapreduce.go

4. Finally, run each test cases 50 times to make sure your code is correct.



Go Tutorial

By Jay Karp

https://courseworks2.columbia.edu/courses/146117/files/folder/Go%20Introduction
?



HW0 FAQ
We’ve got 115 responses via the confirmation form, and if you cannot create your 
assignment repository, you can post a private question in ED to tell us.

● My GitHub account is linked to my personal email account.

No problem; do not worry!

● Will making repo private affect CAs’ visibility?

We can see your private repos. Please keep your repo private!



Thank you for listening

If you haven’t got your assignment repository created, do it 
soon!

Feel free to post questions in ED, and we’ll help you!


