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ABSTRACT
The Census TopDown algorithm is a differentially private
mechanism for creating microdata that captures person-level
demographics of a population. It has two guiding principles:
incremental schema extension and consistency with public
knowledge.

Incremental schema extension is the process of taking
privacy-preserving microdata having schema S0 and adding
additional fields to each record in order to obtain privacy-
preserving microdata having schema S (with S0 ⊂ S). This
requirement can arise from data collection operations, where
some fields are not yet available but differentially private
data must be published anyway. The differentially private
data are then updated once more fields become available.
This requirement can also arise due to the need for scalabil-
ity, as such an approach can break one large optimization
problem (a key component of many differentially private al-
gorithms) into a set of smaller optimization problems.

Consistency with public knowledge is a real-world require-
ment that has been virtually unexplored in the differential
privacy literature. Some information, such as exact state
population totals, may be deemed so important that they
must be released without any perturbation. Other informa-
tion, such as the (unperturbed) number of occupied group
quarters facilities may be contained in public datasets. In
such cases, the differentially private microdata must be con-
sistent with this information either for legal/contractual rea-
sons, to maintain the public’s trust in the data, or to improve
accuracy by incorporating public knowledge.

∗The views expressed in this technical paper are those of the
authors and not those of the U.S. Census Bureau. There are
no sensitive data in this paper. This draft has not undergone
complete internal Census Bureau peer review. Comments
welcome. Please send comments to daniel.kifer@census.gov.
This draft: July 2019.
†Penn State University and U.S. Census Bureau
‡Duke University

1. INTRODUCTION
Differential Privacy [9] (henceforth DP) is considered a

gold standard in privacy protection—it allows organizations
to collect and publish statistics about a group of people while
protecting their individual responses. Initially adopted by
the U.S. Census Bureau in 2008 for the OnTheMap product
[27, 4], it has since seen development by Google [10, 3], Ap-
ple [34], Uber [21], Microsoft [7], and is now being adopted
for the 2020 Census of Population and Housing [1].

The 2020 Census implementation will be the first large-
scale deployment of differential privacy in the centralized
model and, arguably, will have the highest stakes since the
decennial census data are used for apportionment, redistrict-
ing, allocation of funds, public policy, and research.

TopDown is the name given to the current prototype of
the collection of DP algorithms that will be used to generate
confidentiality-preserving microdata with demographic in-
formation from the resident United States population. Top-
Down is based on two design principles: incremental schema
extension and consistency with public knowledge. The com-
bination of these principles leads to NP-complete problems
even for public knowledge expressible as simple counting
queries.

In this paper, we formalize these two principles, study
their computational complexity and then describe the Top-
Down algorithm. We note that these problems and their
solutions may also be of interest in other DP applications to
official statistics and computational advertising.

1.1 Incremental Schema Extension
Let S0 and S be two schemas (sets of attributes) with

S0 ⊂ S. Given a differentially private table T̃ 0 with schema

S0 we want to create a DP table T̃ by adding fields from

S \S0 to every record in T̃ 0 (i.e., by adding columns to T̃ 0).

We say that T̃ is an extension of T̃ 0. Note these tables are

thus mutually consistent: any query performed on T̃ 0 that
only uses attributes in S0 will have the same answer when

run on T̃ .
The need for extensions arises due to the complexity of

data management in large surveys. For example, in the
2010 Census, the first data release was PL94-171 [36]—
redistricting data that contain basic histograms on popu-
lation totals in each geography broken down by race and
ethnicity. The next two major waves, Summary File 1 (SF1)
[37] and the Urban/Rural update [38], contained additional
demographic information about people, households, and group
quarters.
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Figure 1: Publishing differentially private estimates

M̃, F̃ , C̃ with implied constraints. The true counts
are M = M1 +M2, F = F1 + F2 and C = C1 + C2.

Another use case for extensions is to make algorithms
scale. A typical DP algorithm obtains noisy query answers
from the true table T and then solves an optimization prob-

lem to obtain a privatized table T̃ . The number of variables
in this problem is often equal to the number of possible
record values (e.g., the “universe” size, or sample space in
statistics) [16, 24]. For large domains, such an optimiza-
tion problem cannot be performed in main memory or in
reasonable time because of super-linear computational com-
plexity. One solution is to first project T onto a table T 0,

which has fewer attributes, then to create a DP version T̃ 0

that requires solving a much smaller optimization problem.

Then T̃ 0 is extended to the full schema, taking advantage
of parallelization. For example, to create a DP table with
schema S =(Age, Sex, Race, Ethnicity, State, County), we
could first create DP microdata with schema S0 =(Age, Sex,
Race, Ethnicity, State), partition the records by state and
then for each state extend the records with county infor-
mation (resulting in 50 smaller optimization problems being
performed in parallel).

1.2 Consistency with Public Knowledge
Some information is considered so vital that a policy deci-

sion may be made to release it exactly. One such candidate
is the total population in each state, which is used for appor-
tionment and allocation of federal funds to states. In other
cases, there can exist auxiliary datasets with overlapping
information. For example, the LUCA dataset [5] contains
information about group quarters housing facilities in each
census block in the United States, which can provide lower
bounds on sub-population totals. In other cases, common
knowledge and data editing rules enforced by a data collector
restrict the set of feasible tables. For example, “the num-
ber of spouses of householders cannot exceed the number of
householders” is a data-editing rule that could be enforced
during data collection or pre-tabulation editing. Thus, for
legal and contractual reasons, as well as to maintain pub-
lic trust, a data publisher may be required to provide DP

tables T̃ 0 (and later T̃ ) that are consistent with this public
knowledge.

Consistency with published information raises an interest-

ing question: under what conditions on T̃ 0 does an extension

T̃ that is consistent with public knowledge exist? This is a
subtle and often computationally intractable question. To
see the subtlety, consider the following example.

Example 1. Figure 1 represents a small college town that
is divided into two regions R1 and R2, all living in dorms.
For each student we collect the geographic region where they
live and the type of dorm they live in (male-only, female-
only, co-ed). T0 contains only information about dorm type,
while T also contains the region information. Information in
T0 can be summarized by 3 numbers: M,F,C representing
the total number of students living in Male, Female, Co-
ed dorms, respectively. T can be summarized by 6 numbers
M1, F1, C1,M2, F2, C2, where, for example, F2 is the number
of students in Female dorms in Region 2.

The public knowledge is that (1) both regions have 98 stu-
dents each; (2) Region R1 has one female dorm, one co-
ed dorm, and no male dorms; (3) Region 2 has no female
dorms; one co-ed dorm, and one male dorm. It can be repre-
sented by the following linear constraints on those variables
(the specific values of the variables are not public knowledge).

F1 ≥ 0 C1 ≥ 0 M1 = 0 (1)

F2 = 0 C2 ≥ 0 M2 ≥ 0 (2)

F1 + C1 +M1 = 98 F2 + C2 +M2 = 98 (3)

Suppose DP table T̃ 0 has already been produced (which is

equivalent to differentially private counts M̃, F̃ , C̃). What

restrictions (i.e., constraints involving only M̃, F̃ , C̃) are

needed to ensure that we can extend T̃ 0 into a DP table
T̃ whose associated DP counts M̃1, F̃1, C̃1, M̃2, F̃2, C̃2 satisfy
the above equations?

A seemingly “obvious” set of conditions can be derived as

follows. First, we must have C̃ ≥ 0, F̃ ≥ 0 and M̃ ≥ 0.

The total population is 196, so F̃ + M̃ + C̃ = 196. These
are the obvious constraints we obtain by adding up matching
equalities/inequalities in regions R1 and R2.

Are these constraints enough? Surprisingly, it turns out
they are not. Suppose a DP algorithm produced the counts

F̃ = 48, C̃ = 49, M̃ = 99. These counts satisfy the con-
straints that we just listed but they are inconsistent with pub-
lic knowledge—the entire population of male-only dorms in
the town must be contained in Region R2 but there are 98

students in R2, so M̃ = 99 is not a valid value for the popu-
lation in male-only dorms. It turns out that a full set of nec-

essary and sufficient constraints on T̃ 0 (and hence M̃, F̃ , C̃)
implied by public knowledge is:

F̃ ≥ 0 C̃ ≥ 0 M̃ ≥ 0 (4)

F̃ + C̃ ≥ 98 M̃ + C̃ ≥ 98 C̃ + F̃ + M̃ = 196 (5)

The constraints on T̃ 0 can be thought of as (1) constraints

T̃ 0 must satisfy to be consistent with public knowledge;

(2) constraints T̃ 0 (with schema S0) must satisfy in order to

be extendable to a DP dataset T̃ (with schema S ⊃ S0).

1.3 Contributions of the Paper
The DP conceptual and implementation issues are not

specific to the U.S. Census Bureau—they are relevant to
official statistics (government-produced statistics) in other
agencies and countries. We also note that consistency of
DP data with public knowledge has other applications as
well.

In transactional systems, like in online advertising and
shopping, information relevant to billing must be exactly
revealed. For instance, advertisers on Google must know
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exactly the number of individuals who clicked an ad, or sell-
ers on Amazon must know exactly the number of individ-
uals who bought their products, so that they can be billed
correctly. Additionally, platforms like Amazon and Google
might want to release more fine-grained demographic infor-
mation about the people who click on the ads or buy their
products for the purposes of forecasting and product/market
research. There is no justification for releasing these fine-
grained demographic characteristics exactly, and in fact, it
makes sense to release them under strong privacy guaran-
tees of differential privacy. Nevertheless, these differentially
private counts should be consistent with the exact statistics
revealed for billing purposes.

In this paper we introduce and formalize the problem
of consistency with public data and study its interaction
with incremental schema extension. We show that the as-
sociated decision problem is NP-complete even for public
knowledge consisting of simple types of counting queries.
We then present the 2020 Census TopDown algorithms that
uses incremental schema extension. In the case of linearly
expressible public knowledge, we explain how to obtain ap-

propriate constraints on the differentially private table T̃ 0.
We then apply this technique derive constraints based on the
expected public knowledge for the 2020 Decennial Census.

In cases where deriving constraints on T̃ 0 is computationally
expensive, we also present several workarounds.

This paper is organized as follows. In Section 2, we in-
troduce notation and formalize the problem statement. We
review related work in Section 3. We present a complex-
ity analysis of the problem in Section 4. We then describe
the TopDown algorithm in Section 5. In Section 6, we dis-
cuss the mathematical tools that we use to work with im-
plied constraints (specifically, Fourier-Motzkin Elimination
and Network Flows). In Section 7 we use these tools to de-
rive implied constraints for a variety of mathematical classes
of constraints that can represent pieces external knowledge.
In Section 8, we list the expected constraints for the 2020
Decennial Census and how they can be accommodated in
our framework. For situations where deriving implied con-
straints becomes infeasible, we discuss a workaround called
the failsafe in Section 9. We then discuss conclusions and
future work in Section 10.

2. PROBLEM STATEMENT

2.1 Notation
Let bxc be the operation that rounds a number (or vector)

down to the nearest integer.
Let S0 = {R1, R2, . . . , Rd0} be a set of d0 discrete at-

tributes having finite domains Ω1, . . . ,Ωd0 (numeric attributes
can be discretized; for example age can be viewed as a
discrete attribute with domain {0, 1, . . . , 115}). Let S =
{R1, . . . , Rd0 , Rd0+1, . . . , Rd} be a superset of S0, contain-
ing d > d0 discrete attributes. We say that S is a schema
extension of S0.

We will use the notation T 0 (resp. T ) to represent a table
of n records with schema S0 (resp. S). We say T 0 and T are
consistent if T 0 is the projection of T onto the attributes
in S0; in this case we say T is an extension of T 0. The
table T 0 can be converted into a histogram H0 with |Ω1| ×
· · · × |Ωd0 | cells, one for each possible distinct record. The
value of a cell, H0[i1, . . . , id0 ], is the number of times the
corresponding record appeared in T 0. In particular, this

is a nonnegative integer. Similarly, H is the corresponding
histogram of T .

We let size(H0) represent the number of cells in H0, which
is equal to the domain size of records from T 0, which is equal
to |Ω1|× · · ·× |Ωd0 |. Similarly size(H) is the number of cells
in H.

In the case of Example 1, the table T 0 has a record for
every person and has one column which specifies the dorm
type (female, male, co-ed) while T has two columns: dorm
type and region. H0 is thus a 3× 1 histogram while H is a
3 × 2 histogram where, for example, H[2, 0] is the number
of people in the first region who live in co-ed dorms.

We say that a query Q0 is linear over table T 0 if Q0 is
a linear function of H0 (similarly for queries Q over T ).
Counting queries are an example of a linear queries.

Let C be a set of linear constraints on H (and hence T ),
where each constraint i has the form Qi(H) m ci, where
Qi is a linear query, m is one of the following comparison
operators ≤,=,≥, and ci is a scalar. We will use C0 to
denote constraints on T 0.

Privacy-preserving versions of T and T 0 are denoted as T̃

and T̃ 0 and their corresponding histograms are H̃ and H̃0.

2.2 Privacy
We use ε-differential privacy as the formal privacy defini-

tion.

Definition 1 (ε-differential privacy [9]). Given a
privacy-loss budget ε > 0, an algorithm M satisfies ε-differen-
tial privacy if for any subset V of the range of M and for
any pair of tables T1, T2 that differ in the value of one record,
P (M(T1) ∈ V ) ≤ eεP (M(T2) ∈ V )

The parameter ε is known as the privacy-loss budget and
setting its value is a job for policy-makers.

Differential privacy has several important properties. The
first is transparency—an organization can release the source
code (but not random bits) of M without compromising
the privacy guarantees [9]. The second property is post-
processing [29]: if we run an algorithm A with no direct
access to T on the output of the ε-differentially private
algorithm M(T ), then this composed algorithm A(M(T ))
also satisfies ε-differential privacy. Finally, differential pri-
vacy has an adaptive composition property: if we run an
ε1-differentially private algorithm M1(T ) to produce an out-
put ω and an ε2-differentially private algorithm M2(ω, T ),
then the combined release of the outputs of both algorithms
satisfies (ε1 + ε2)-differential privacy [29].

These properties are vital for our setting. First, we create

a privatized table T̃ 0 = M1(T 0) using an algorithm M1 that
satisfies ε1-differential privacy. Note that since T 0 is obtain-
able from T (by removing columns), then we can think of
M1 as also an ε1-differentially private algorithm on T . Then
for some ε2 > ε1, we run an (ε2 − ε1)-differentially private

algorithm M2 to create T̃ = M2(T̃ 0, T ) for a total privacy
cost of ε1 + (ε2 − ε1) = ε2.

In this situation we say that T̃ 0 was created using ε1
privacy-loss budget and it was extended to T̃ using an ad-
ditional ε2 − ε1 privacy-loss budget, for a total privacy-loss
budget of ε2.

2.3 Problem Statement
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We are given a table T 0 with schema S0 and a table T ,
consistent with T 0, having schema S ⊃ S0. We must first re-

lease a privacy-preserving version T̃ 0 of T 0 using ε1 privacy-

loss budget and then extend it into T̃ , a privacy-preserving
version of T , using an additional (ε2 − ε1) privacy-loss bud-
get.

Recall that there are public knowledge constraints C on T

and any differentially private version T̃ that we release must

satisfy them as well. Thus, when we generate T̃ 0 we must

make sure that it is possible to extend it to a table T̃ that

satisfies C. Therefore, T̃ 0 must satisfy some constraints C0
that are implied by C. In Example 1, we saw that all the

constraints on T̃ referenced the location attribute,1 which

is not present in T̃ 0. This means that C0 is generally not a
subset of C and is not always trivial to derive.

In order to formalize the requirements on C0, we need the
following conditions.

Definition 2 (Necessary Implied Constraints). Let
S and S0 be two schemas with S0 ⊂ S. Let C (resp. C0) be
a set of constraints over tables with schema S (resp. S0).
We say that C0 is a necessary set of implied constraints of
C if, for all tables T with schema S that satisfy C, their
projections T 0 satisfy C0.

Definition 3 (Sufficient Implied Constraints). We
say that C0 is a sufficient set of implied constraints of C if,
for each table T 0 with schema S0 that satisfies C0, there
exists an extension T with schema S that satisfies C.

We say that C0 is a complete set of implied constraints of
C if it is both necessary and sufficient. Intuitively, the nec-
essary condition means that we do not add incorrect con-
straints and the sufficient condition means that we do not
accidentally omit any constraints.

Instead of working directly with T̃ 0 and T̃ , our algorithms

will be working with the corresponding histograms H̃0 and

H̃. The reason is that the histograms can be manipulated
numerically and the constraints C and C0 most often encoun-
tered in practice are linear functions over the histograms.
Histograms are only equivalent to tables of records when the
histogram entries are integers and non-negative. Thus our
algorithms must produce nonnegative integer histograms us-
ing differential privacy (despite its importance, such a re-
quirement is often ignored in the literature [16, 24, 39]).

We say that H̃ is an extension of H̃0 whenever T̃ is an

extension of T̃ 0. Note that H̃ is an extension of H̃0 if and
only if H̃0 is a marginal of H̃. That is, for all i1, . . . , id0 :

H̃0[i1, . . . , id0 ] =
∑
i
d0+1

· · ·
∑
id

H̃[i1, . . . , id0 , id0+1, . . . , id]

Now we can formally state the problem:

Problem 1 (External Consistency). Let H0 be a
histogram on d0 attributes and let H be a histogram on d
attributes that is an extension of H0. Given positive num-
bers ε1, ε2 with ε1 < ε2 and a set of linear constraints C on
H,

1In Example 1, Table T had constraints on the population
in dorms in each region, while the resulting constraints on
T 0 were over combined populations each dorm type.

1. Identify a complete set of implied constraints C0 on H0.

2. Using ε1 privacy-loss budget, generate H̃0, a differen-
tially private version of H0 that only contains nonnega-
tive integer counts and satisfies C0.

3. Using an additional ε2 − ε1 of the privacy-loss budget,

generate H̃, a differentially private version of H that
only contains nonnegative integer counts, that satisfies

C, and is an extension of H̃0.

2.4 Applications to 2020 Census Data
The generation of differentially private microdata for the

2020 Census of Population and Housing will be performed
by the Disclosure Avoidance System. It uses an algorithm
called Census TopDown, which is described in this paper.
The first data release will be the PL94-171 redistricting data
[36], which is used for redrawing every legislative district in
the country. Subsequent data releases provide more detailed
tabulations of demographic characteristics for persons and
households.

TopDown will be used to generate a differentially private
version of the PL94-171 microdata—a table with attributes
Race (63 values), Ethnicity (Hispanic or not), VA (whether
age is 18+, or age is ≤ 17), Housing Type (in a household
or in one of 8 types of group quarters), and location at-
tributes State, County, Tract, Block Group and Block.2

For brevity, we refer to these attributes as R, E, VA, HT,
LS, LC, LT, LBG, LB,.

The PL94-171 dataset is too large to process in memory,
thus the TopDown algorithm must repeatedly generate ex-
tensions of intermediate tables. It generates a differentially
private table with the schema R, E, VA, HT (i.e., national
level demographics), then extends it to the schema R, VA,
HT, LS (i.e state level demographics), and then extends
four more times to add attributes for county, then tract,
then block group, and then block.

Each intermediate differentially private table must ulti-
mately be extendable to the schema for the more detailed
person and households tabulations that have previously been
called Summary File 1 [37] and are now called the Demo-
graphic and Housing Characteristics. This larger dataset
also has a predefined constraint set.

3. RELATED WORK
The requirement that the output of a differentially pri-

vate algorithm satisfy predefined constraints is known as
consistency. It was introduced by Barak et al. [2] in the
publication of overlapping differentially private histograms.
For example, a differentially private histogram on Age by
Race and a differentially private histogram on Age by Eth-
nicity can both be used to answer queries that are purely
about age. Consistency means that the answers to those
queries would be the same no matter which table they were
computed from.

Consistency can often be obtained by adding noise to each
query and setting up a least squares optimization problem
that finds a single table such that queries computed over
the table best match the noisy answers. Hay et al. [17]

2Location is hierarchical: states are subdivided into counties
(or county-equivalent regions), which are subdivided into
tracts, block groups, and then blocks. In 2010 there were
over 6.2 million inhabited blocks.
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introduced a specialized algorithm for hierarchical queries,
which was later extended by Cormode et al. [6] to the case
where the noisy queries had different variances. Ding et al.
[8] provided a different extension for lattice-based queries.
While the least squares formulation is most common, other
approaches are possible. Lee et al. [23] and Barak et al.
[2] used an L1 optimization problem; Lin and Kifer used
Bayesian decision theory [25]; and Proserpio et al. [33] used
an MCMC approach; Hardt et al. [16] used a multiplicative
update rule that could be viewed as a mirror descent opti-
mization of a least squares problem while Gaboardi et al.
[12] worked directly with records rather than histograms.

In the differential privacy literature, several works consid-
ered situations where certain exact query answers over the
data, like one-dimensional marginals, were publicly known
[22, 18, 35]. They studied how privacy guarantees were af-
fected [22, 18] and how they simplified differentially private
algorithms [35]. However, earlier work did not encounter im-
plied constraints, which is a novel contribution of our work.
Implied constraints however do show up in other fields un-
related to privacy, like data editing [11] and the study of
linear inequalities [20, 30].

4. HARDNESS RESULTS
In this section, we prove NP-completeness even for simple

and naturally arising versions of this problem. The corre-
sponding decision problem is the following.

Problem 2 (Implied Constraints Decision Problem).
Given two sets S0 and S of attributes with S0 ⊂ S, a set C
of linear constraints on tables with schema S and a table T̃ 0

with schema S0, is it possible to extend T̃ 0 to a table T̃ that
has schema S and satisfies C?

Note that if implied constraints could be constructed and
evaluated in polynomial time, then this decision problem
would be polynomially-time solvable. So, proving that the
decision problem is NP-complete means that constructing
the set C0 of implied constraints is intractable in the general
case. Our first result is even that if we start with a table
on one attribute (|S0| = 1) and wish to extend it to two
attributes (|S| = 2) then the decision problem can encode
any 3-SAT [13] formula and so is NP-complete.

Theorem 1. The implied constraints decision problem is
NP-complete in the size of C even when |S0| = 1, |S| = 2.

For proof see Appendix B.
In practice, one would not expect the set C to be as ar-

bitrarily complex as a 3-SAT problem. The types of prob-
lems that arise in practice have a much simpler structure.

For example, suppose we have a table T̃ 0 of demographic
characteristics for the entire population—a schema S0 =
{R1, R2}—and we want to extend it to a county-level demo-

graphics table T̃—a schema S = {R1, R2,County}. Further
suppose that a one-dimensional histogram on R1 is publicly
known in each county and a one-dimensional histogram on
R2 is also known at each county.3 Let us call this prob-
lem the location extension with 2 one-way marginal equality

3Such a situation occurred in the 2010 Census when the
exact number of voting-age and non-voting age persons were
known in each block (R1 is voting age status), along with
the number of householders and non-householders in each
block (attribute R2).

constraints at each locale. It turns out that even when the
smallest attribute domain (say, the domain of R1) only has
3 possible values, the decision problem is still NP-complete
in the size of the domains of all the variables.

Theorem 2. The decision problem for location extension
with 2 one-way marginal equality constraints at each locale
is NP-complete in the number of possible locations and the
domain size of the attributes when each attribute (including
the location attribute) has domain size at least 3.

For proof, see Appendix C.
Thus, even seemingly simple variations of this problem

can be intractable and a general polynomial time solution is
out of the question (unless P=NP). Therefore, in the remain-
der of the paper, we first explain how incremental schema
extension is used inside the Census TopDown algorithm and
then we discuss special cases that are of interest to Cen-
sus Bureau applications. We also discuss some theoretical
tools that are useful in solving them, which include Fourier-
Motzkin elimination [20, 30] and network flows [32].

5. THE CENSUS TopDown ALGORITHM
We now present the TopDown framework our system uses

for constructing large scale differentially private histograms
with external consistency. Abstracting the setup from Sec-
tion 2.4, we have demographic attributes R1, . . . , Rd−1 along
with a hierarchical location attribute L (e.g., nation, state,
county, tract, block group, and block). Our goal is to gen-

erate a sequence of histograms H̃0, H̃1, . . . , H̃k where H̃0

is a histogram on R1, . . . , Rd−1, then H̃1 extends it with
State information (so it is a histogram on the attributes

R1, . . . , Rd−1 and state), H̃2 extends it with county, etc.,

and H̃k = H̃ is our desired full histogram.
In order to make the algorithm run in parallel, we split

the histograms along the geography dimension. For ex-

ample H̃1 is a histogram on the attributes R1, . . . , Rd−1

and state. Alternatively, we can view H̃1 as 50 histograms

H̃1
AK , H̃

1
AL, . . . , H̃

1
WY where, for example, H̃1

AK is a his-

togram on R1, . . . , Rd−1 in Alaska and H̃1
WY is a histogram

on R1, . . . , Rd−1 in Wyoming. In general, if γ1, . . . , γ` are

the locations covered by H̃j , we use the notation H̃j
γi to

refer to the part of the histogram that deals with loca-

tion γi. Note that each H̃j
γi is a histogram on attributes

R1, . . . , Rd−1. For example, Big Horn County is a county
in Wyoming (and “county” is level 2 of the location hierar-

chy), so H̃2
BHC is a histogram on attributes R1, . . . , Rd−1 of

people in that county. A visual example of this notation is
shown below.

H̃1 :
AL AK AZ AR CA . . .

R1 = 0 99 35 1 80 20 . . .
R1 = 1 32 40 66 99 27 . . .

99
32

H̃1
AL

35
40

H̃1
AK

1
66

H̃1
AZ

80
99

H̃1
AR

20
27

H̃1
CA

· · ·

For each geographic region γ in level i of the hierarchy, there
is a workload W i

γ of linear queries—these are the queries
about the histogram at that location that end-users pro-
cess. If γ is a leaf (e.g., represents a block at level k of the
hierarchy), there is also a set of external linear constraints
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Ckγ that should be satisfied by H̃k
γ (the part of the full table

that refers to γ). Thus our set C of external constraints is
equivalent to the set

{
Ckγ | γ is a leaf

}
.

For i = 0, 1, . . . , k − 1, let Ci be the set of implied con-

straints on H̃i. Since H̃i can be represented as set of his-

tograms {H̃i
γj | γj is a node at level i}, we can also write

Ciγj as the implied constraints on H̃i
γj . Thus, we have Ci =

{Ciγj | γj is a node at level i}.
With this notation, the Census TopDown algorithm is

shown in Algorithm 1. We next describe its pieces.

5.1 Initialization.
The first step (line 2) is to obtain privacy-preserving mea-

surements of the workload queries. For each level i and each
node γ at level i, we use ε/k of the privacy-loss budget4 to
answer the workload queries W i

γ . These workload queries
can be answered using the Laplace mechanism [9], Geo-
metric mechanism [14], or more advanced techniques such
as the high dimensional matrix mechanism [28]. As long
as the mechanism provides ε/k-differential privacy for the
workloads it is given, this entire phase satisfies ε-differential
privacy. A noisy answer to a query is referred to as a mea-
surement.

The next step (line 3) is given the external knowledge con-
straints Ckγ for each leaf node γ and determines the implied
constraints for the nodes at levels i = 0, 1, . . . , k − 1. The
generation of implied constraints is discussed in the rest of
the paper, starting with Section 7. The rest of the algorithm
is post-processing—creating nonnegative integer histograms
and incrementally extending them (i.e., adding more geo-
graphic detail).

5.2 Construction of H̃0.
The first goal of the postprocessing step is to create the

initial differentially private histogram H̃0 that will later be
extended. In our case, this is the histogram nation-level
demographic characteristics. This histogram is constructed
in two phases. First, we create a nonnegative fractional
histogram H∗ (Line 8) by solving a least squares optimiza-
tion problem. Then, using linear programming (or integer
programming), we round it to get the nonnegative integer

histogram H̃0 (Line 9). These optimization problems are
solved using commercial state-of-the-art optimization soft-
ware like Gurobi [15] or CPlex [19].

The nonnegative fractional histogram H∗ is obtained by
solving the following problem (which we explain next):

arg min
H∗

∑
Qi∈W0

γ0

||Qi(H∗)−mγ0,i||
2
2 (6)

s.t. H∗ � 0 (nonnegativity)∑
x

H∗[x] = population total

Q′j(H
∗) opj cj is true for (Q′j , opj , cj) ∈ C

0
γ0

Here γ0 represents the root node (of the geographic hierar-
chy) and W 0

γ0 is the query workload—the set of queries over
the national histogram for which we obtained noisy measure-
ments in the initialization step. For each query Qi ∈ W 0

γ0 ,

4Since nodes in the same level cover disjoint regions, we
exploit parallel composition within a level and sequential
composition between levels.

1 function Driver(H, ε,Workload):
2 A← PrivacyPreservingAnswers(H, ε,Workload)

3 B ← ImpliedConstraints(
{
Ckγ : γ ∈ leaves

}
)

4 H̃ ← TopDownPostprocess(A,B,Workload)

5 return H̃

6 function TopDownPostprocess(A,B):
7 node-queue ← ∅ // List of processed nodes

/* Generate root node histogram H̃0 */

8 H∗ ← solution to Equation 6

9 H̃0 ← solution to Equation 7
/* Recurse down the hierarchy */

10 node-queue.append(root node γ0)
11 while node-queue is not empty do
12 γ ←node-queue.pop()
13 i←level(γ) m← |child(γ)|
14 γ1, . . . , γm ← children(γ)

/* Generate child histograms H̃i+1
` */

15 H∗1 , . . . , H
∗
m ← solution to Equation 9

16 H̃i+1
γ1 , . . . , H̃i+1

γm ← solution to Equation 11
17 for each γj do
18 if γj has children then
19 node-queue.append(γj)
20 end

21 end

22 end

23 Concatenate the leaf histograms (H̃k
γ for γ ∈ leaves)

into the single histogram H̃

24 return H̃
Algorithm 1: Census TopDown Algorithm

the noisy answer is denoted by mγ0,i. Hence the objective of
the optimization problem is to find a histogramH∗ that min-
imizes the squared error between the values of the queries
evaluated on H∗ (i.e. Qi(H

∗)) and the corresponding noisy
measurements mγ0,i. This minimization must respect sev-
eral constraints: the values in the cells are nonnegative, and
the sum of the cells is the total population. The last line
of the optimization enforces implied constraints C0γ0 on the
national histogram. Specifically, each constraint j has a lin-
ear query Q′j , a comparison opj that is either ≤, =, or ≥,
and a constant cj that Q′j(H

∗) is compared to. We discuss
implied constraints in detail in Section 7.

The solution to this optimization problem is a histogram
H∗ that satisfies the implied constraints and is nonnegative,
but almost always fractional. The next step is to convert it

into a nonnegative integer histogram H̃0 that satisfies the
implied constraints (so that it can eventually be extended
to the full histogram on all attributes including location).
This can be viewed as a rounding step that is performed by
solving the following minimization problem.

H̃0 = arg min
H†
− (H† − bH∗c) · (H∗ − bH∗c) (7)

s.t. H† � 0 (nonnegativity)∑
x

H†[x] =
∑
x

H∗[x] (total sum constraint)

Q′j(H
†) opj cj is true for (Q′j , opj , cj) ∈ C

0
γ0

6
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|H†[x]−H∗[x]| ≤ 1 for all cells x

∀x : H†[x] is an integer (8)

The goal of this problem is to find a histogram H† that is
close to H∗ subject to the constraints. It turns out that in
the presence of these constraints, the objective function is
equal to ||H† −H∗||1.

First, we examine the constraints. The constraints are
that the solution is nonnegative, has the same total sum as
H∗, and satisfies all of the implied constraints. Furthermore,
we require |H†[x] − H∗[x]| ≤ 1 so that no cell in H† is
very different from its value in H∗ (this equation can be
interpreted as saying we obtain H† from H∗ by rounding
each cell either up or down). Finally, the last constraint
(Equation 8) is that H† only has integer entries.

To show that the objective function is equivalent to mini-
mizing L1 norm in the presence of the constraints, note that
||H† − H∗||1 is equal to ||(H† − bH∗c) − (H∗ − bH∗c)||1.
Noting that H∗ is a fixed constant in this problem, the con-
straints force (H†−bH∗c) to be a vector of zeroes and ones.
Therefore, the L1 norm is then equal to

(H†−bH∗c)·(~1−(H∗−bH∗c))+(~1−(H†−bH∗c))·(H∗−bH∗c)

where the left term accounts for the entries that are rounded
up to the nearest integer (e.g., H†[i]− bH∗[i]c = 1) and the
right term accounts for the entries that are rounded down
(e.g., H†[i] − bH∗[i]c = 0). Since the constraints on total

population force (H† − bH∗c) · ~1 to be a constant—that is,

equal to (H∗ − bH∗c) ·~1—minimizing the above equation is
equivalent to minimizing −(H† − bH∗c) · (H∗ − bH∗c).

The integrality condition can sometimes be dropped. If
we drop it, the result is a linear program. If the constraints
in this linear program have a special property called total
unimodularity [31] (discussed in Section 6.1), then the solu-
tion to this program automatically returns integers as long
as we use the simplex algorithm or barrier+crossover algo-
rithm to solve the linear program [31].

If the constraints are not totally unimodular, then the
integer constraints in Equation 8 are necessary and require
an optimizer to solve an integer program, which can be very
slow. Thus, the efficiency of this phase of the algorithm
depends on two factors:

• How quickly we can compute the implied constraints.

• Whether the optimization problem in Equation 7 (which
depends on the implied constraints) is totally unimod-
ular.

These are the main questions we consider when presenting
the derivation of implied constraints.

5.3 Recursive Schema Extension.
Once the national histogram H̃0 has been created, the

next step is to extend it to H̃1 (adding state-level infor-

mation), H̃2 (adding county information), . . . , H̃k (adding
block information). This process happens recursively—first,
we fix (i.e., hold constant) the root node and generate its
children (e.g., histograms for each state) with the constraint
that the child histograms add up to the parent histogram
while satisfying their own implied constraints. Then, for
each state histogram, we fix the histogram and generate its
county-level children such that they add up to the state, and
so forth down to the block.

Generally, after a histogram H̃i
γ has been generated for a

node γ in level i of the hierarchy (initially γ is the root node),
then we generate its children by solving a least squares opti-
mization problem followed by a linear (or integer) program.
The least squares optimization problem generates nonnega-
tive fractional histograms and the subsequent optimization
problem rounds them to nonnegative integer histograms.

The least squares optimization problem is the following:

arg min
H∗1 ,...,H

∗
m

m∑
j=1

∑
Q`∈W

i+1
γj

||Q`(H∗j )−mγj ,`||
2
2 (9)

s.t. H∗j � 0 for all j
m∑
j=1

H∗j [x] = H̃i
γ [x] for all cells x

Q′`(H
∗
j ) op` c` is true for all j

and for all(Q′`, op`, c`) ∈ C
i+1
γj

Here we have query workloads W i+1
γj for each child γj . For

each query Q` in a workload W i+1
γj we have its noisy answer

mγj ,`. The objective is to find histograms H∗1 , H
∗
2 , . . . , H

∗
m

such that the answers to queries evaluated over those his-
tograms are as close as possible to the noisy answers. These
histograms must satisfy several constraints. First, they must
be nonnegative. Second, the sum of the child histograms
must add up to the parent histogram. This is the stan-
dard parent-child constraint – e.g., the number of female,

hispanic, 33 year-olds at the national level H̃0 should equal
the total number of female, hispanic, 33-year-olds in the

state level histograms H̃1
AL, H̃

1
AK , . . . , H̃

1
WY . The last set

of constraints is that each child histogram must satisfy its
implied constraints.

Then we round these fractional histograms H∗1 , . . . , H
∗
m to

obtain the nonnegative integer child histograms H̃i+1
γ1 , . . . , H̃i+1

γm

using the following optimization problem.

H̃i+1
γ1 , . . . , H̃i+1

γm (10)

= arg min
H
†
1 ,...,H

†
m

m∑
j=1

−(H†j − bH
∗
j c) · (H∗j − bH∗j c) (11)

s.t. H†j � 0 for all j

Q′`(H
†
j ) op` c` is true for all j

and for all(Q`, op`, c`) ∈ C
i+1
γj

|H†j [x]−H∗j [x]| ≤ 1 for all j and cells x∑
j

H†j [x] = H̃i
γ [x] for all cells x

∀x, j : H†j [x] is an integer (12)

This linear/integer program is similar to Equation 7. We

want to find histograms H†1 , . . . , H
†
m that are as close as

possible to the fractional histograms H∗1 , . . . , H
∗
m (a similar

argument to that of Equation 7, but applied to all terms
of this objective function simultaneously shows that this is
equivalent to minimizing the sum of L1 norms). This his-
tograms must be nonnegative and satisfy the implied con-

straints for H̃i+1
γ1 , . . . , H̃i+1

γm . For each j we also have the

7
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constraint |H†j [x]−H∗j [x]|, which can be interpreted as say-

ing that H†j is obtained from H∗j by rounding each cell ei-
ther up or down. We must also include the parent-child
summation constraint, which says that H†1 , . . . , H

†
m (which

will become the child histograms) must add up to the par-
ent. Finally, Equation 12 is used to ensure the histograms
are integers. Again, if the problem is totally unimodular,
the last constraint is not needed because a linear program
solver (e.g., the simplex or barrier + crossover algorithms)
will automatically return integer solutions.

Once the leaf histograms H̃k
γ have been generated, the al-

gorithm concatenates them to form the final table, a demo-

graphic characteristics histogram H̃ that includes all levels
of geography.

In the subsequent sections, we consider situations in which
implied constraints can be computed efficiently and the round-
ing optimization problems have totally unimodular constraints,
as these conditions ensure that the TopDown algorithm runs
in polynomial time.

6. MATHEMATICAL TOOLS
In this section we discuss the mathematical tools used to

derive implied constraints.

6.1 Total Unimodularity
In feasible linear programs of the form:

arg min
~x
~c T~x

s.t. A~x � ~b

The set of optimal solutions forms a polytope. If the vec-

tor ~b only contains integers, if the matrix A has the total
unimodularity property, and if the polytope of optimal so-
lutions is bounded, then and all vertices of this polytope
are integers. This means that some of the optimal solutions
for ~x are vectors of integers. Furthermore, algorithms like
Simplex will return one of these integer vectors [31].

A matrix is totally unimodular (TUM) if the determinant
of every square sub-matrix is either −1, 0, or 1 [31]. Thus,
the efficiency of the L1 solves in the TopDown algorithm
depends on the L1 solve being equivalent to a linear program
with a TUM constraint matrix.

6.2 Fourier-Motzkin Elimination (FME)
Fourier-Motzkin elimination (FME) [20, 30] is a technique

for eliminating variables in a system of linear inequality con-
straints. Starting with a system of constraints A on variables
x1, x2, . . . , x

′
d, one can obtain a system of constraints B on

variables x1, x2, . . . , x
′
k (with k′ < d′) such that A has a

feasible real-valued solution if and only if B has a feasible
(real-valued) solution.

The process is fairly simple. To eliminate a variable x′d,
we find all inequalities involving it (equalities of the form∑
i aixi = ci can be treated as a pair of inequalities

∑
i aixi ≥

ci,
∑
i aixi ≤ ci) and isolate xj on one side to get:

xd′ ≤ a1,1x1 + a1,2x2 + · · ·+ a1,d′−1xd′−1

xd′ ≤ a2,1x1 + b2,2x2 + · · ·+ b2,d′−1xd′−1

...
...

xd′ ≥ b1,1x1 + b1,2x2 + · · ·+ b1,d′−1xd′−1

xd′ ≥ b2,1x1 + b2,2x2 + · · ·+ b2,d′−1xd′−1

...
...

Then, for each pair of ≥ and ≤ constraints xd′ ≤ ai,1x1 +
ai,2x2 + · · ·+ ai,d′−1xd′−1 and xd′ ≥ bj,1x1 + bj,2x2 + · · ·+
bj,d′−1xd′−1 one introduces a new constraint ai,1x1+ai,2x2+
· · ·+ai,d′−1xd′−1 ≥ bj,1x1 +bj,2x2 + · · ·+bj,d′−1xd′−1. After
all new constraints are generated, the old ones are removed
and hence xd′ is eliminated since it does not appear in the
new system of inequalities.

Given a solution to the new system of inequalities, it is
easy to see that it can be extended to the original system of
inequalities by choosing any value for xd′ that satisfies:

max
j
bj,1x1 + bj,2x2 + · · ·+ bj,d′−1xd′−1 ≤ xd′

min
i
ai,1x1 + ai,2x2 + · · ·+ ai,d′−1xd′−1 ≥ xd′

since a solution to the new system of inequalities implies
that for all i, j, ai,1x1 +ai,2x2 + · · ·+ai,d′−1xd′−1 ≥ bj,1x1 +
bj,2x2 + · · ·+ bj,d′−1xd′−1.

Note that this extension is for real-valued variables. After
constraints are derived, we typically often need to prove that
integer-valued solutions to the final system of inequalities
can be extended to integer-valued solutions of the original
problem.

One can repeatedly use FME to sequentially eliminate
xd′ , xd′−1, xd′−2, etc. The Fourier-Motzkin algorithm runs
in double exponential time in the number of eliminated vari-
ables (in the worst case) but acceleration techniques [20, 30]
can sometimes make it practical.

6.3 Network Flows
Consider a directed acyclic graph with exactly one source

s (a node with no incoming edges), one sink t (a node with
no outgoing edges), and nonnegative weights on each edge
(called edge-capacities). A flow is an assignment of nonnega-
tive numbers to each edge such that at each node (except for
the source and sink) the sum on the incoming edges equals
the sum on the outgoing edges and can be thought of as the
amount of liquid flowing on each edge as it goes from the
source to the sink. A flow is feasible if the flow on each edge
is at most the weight on the edge. The amount of flow is
the sum of the flow on each edge coming out of the source
(or, equivalently, going into the sink). A cut is a partition of
the vertices of the graph into two sets S and T , where s ∈ S
and t ∈ T . The value of a cut is the sum of the capacities
on all edges of the form (a, b) where a ∈ S and b ∈ T .

The Max-Flow/Min-Cut theorem [32] states that the max-
imum possible amount of flow is equal to the minimum value
of any cut. Furthermore, if all edges have integer or infinite
edge capacities (except for edges incident to the source and
sink), then maximum flow amount is achieved by an integral
flow (the flow on each edge is an integer).

7. IMPLIED CONSTRAINTS
In this section we provide examples of complete implied

constraints for several situations of interest to the Census
TopDown algorithm.

7.1 Generating Implied Constraints via FME
In this section we explain how to use FME to generate

implied constraints. To minimize the amount of notation
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required, we explain it with a simple example related to one
set of external constraints that was under consideration.

Example 2. The hierarchy γ on location L contains the
root and two children A and B. The full data schema con-
tains the attributes RH (whether someone is a householder
or not), RV (whether someone is voting age or not) and L.

We want to release a differentially private histogram H̃0 over
attributes RH , RV and then extend it with location. Suppose
the public knowledge is the total population in regions A and
B along with the number of voting age persons in each region
and the total number of householders in each region. This
is one scenario under considerations at the Census Bureau.
This public knowledge is summarized as follows:5

Region A
RV = 0 RV = 1

RH = 0 ? ? 6
RH = 1 ? ? 16

17 5

Region B
RV = 0 RV = 1

? ? 15
? ? 5
5 15

What should be the constraints on the 2×2 histogram at the
root level?

Let hA[i, j] (resp, hB [i, j]) denote the unknown cell counts in
the histogram for Region A (resp, B). The public knowledge
can then be expressed as

hA[0, 0] + hA[0, 1] = 6 hB [0, 0] + hB [0, 1] = 15 (13)

hA[1, 0] + hA[1, 1] = 16 hB [1, 0] + hB [1, 1] = 5 (14)

hA[0, 0] + hA[1, 0] = 17 hB [0, 0] + hB [1, 0] = 5 (15)

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15 (16)

hA[i, j] ≥ 0 hB [i, j] ≥ 0 for i = 0, 1 j = 0, 1 (17)

Now, H̃0 is intended to be a differentially private histogram
on RH , RV at the root (national) level. We let h[i, j] refer
to its cell counts. The goal is to determine the allowable
values of the h[i, j] so that it is consistent with the public
knowledge formalized in Equations 13–17. The relationship
between h[i, j] to hA[i, j] and hB [i, j] is:

h[i, j] = hA[i, j] + hB [i, j] for i = 0, 1; j = 0, 1 (18)

Equations 13–18 are therefore the initial system of (in)equalities.
Our goal is to apply FME to eliminate the variables hA[i, j]
and hB [i, j] (for i = 0, 1 and j = 0, 1). This would leave
only the desired constraints on h[i, j].

The resulting constraints (full derivation appears in Ap-
pendix D) are:

h[0, 0] = 1 + h[1, 1]

h[0, 1] = 20− h[1, 1]

h[1, 0] = 21− h[1, 1]

10 ≥ h[1, 1] ≥ 0

So any differentially private histogram at the root level must
satisfy these constraints.

5Note that knowing the number of voting age people and
total population in a region means we also know the number
of people who are not voting age.

Source Sink

Dorm

Region

1

2

F

C

M

∞

∞

∞

∞

98

98

Figure 2: Encoding Example 1 as a Network Flow

Integer feasibility. The types of implied constraints con-
sidered in Example 2 are formalized in the lemma below. It
turns out that this is an easy case: two one-way marginal
constraints are imposed on every leaf and each marginal only
has two values. As shown previously in Theorem 2, the com-
plexity increases dramatically when the size of the marginals
increases.

Lemma 1. Let h be a 2 × 2 matrix of nonnegative inte-
gers and let h1, . . . , hm be nonnegative matrices such that∑
i hi = h. Suppose that the following constraints are im-

posed.

• For each i, j and `, we have h`[i, j] ≥ 0

• For each i and `, the row sums are fixed: h`[i, 0] +
h`[i, 1] = r`[i] for a pre-specified vector r`

• For each j and `, the columns sums are fixed: h`[0, j]+
h`[i, j] = c`[j] for a pre-specified vector c`

then a complete set of implied constraints on h are:

∀i, h[i, 0] + h[i, 1] =
∑
`

r`[i]

∀j, h[0, j] + h[1, j] =
∑
`

c`[j]

h[1, 1] ≤
∑
`

min(r`[1], c`[1])

h[1, 1] ≥
∑
`

c`[1]−min(c`[1], r`[0])

Furthermore, if h is an integer histogram that satisfies those
constraints, then there exist integer histograms h1, . . . , h`
that add up to h and satisfy the external knowledge row and
column sum constraints for each `

See Appendix E for the proof.

7.2 Generating Complete Implied Constraints
via Network Flows

Network flow is a more specialized tool than FME – it is
not as automatic as FME and applies in fewer cases, but it is
simpler to use as a proof technique. In this section we show
how the complete implied constraints of Example 1 can be
derived with network flows.

Example 1 can be represented as a network flow as shown
in Figure 7.2. There are 3 nodes corresponding to dormi-
tories - a Female dorm node with an incoming edge labeled

9
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with edge capcity F, a Co-ed dorm node with an incoming
edge labeled with edge capacity C, and a Male dorm node
with an incoming edge labeled with edge capacity M . There
are also two region nodes. In this graph, people flow from
the source to the different dorm types. The capacities on
these edges (F, C, M) will be determined later. People in
female dorms flow into Region 1 (because only that region
has female dorms). Similarly, people in male dorms flow into
Region 2, while people in co-ed dorms can flow into both re-
gions. People in both regions then flow into the sink. Since
there is a capacity of 98 on the edge from Region 1 to the
sink, any feasible flow must have at most 98 people flowing
into Region 1 and similarly for Region 2.

Now, if we have the base histogram H̃0 which, in this case,

consists of the differentially private estimates F̃ , C̃, M̃ then
this partially specifies a flow (outgoing flow from the source,

with flow F̃ on the edge with capacity F , etc.). The question
is whether we can complete the flow (i.e., assign flows on the
rest of the edges) that satisfy the capacity constraints. If we

can, then we can try to construct the extended table H̃ from
the flow as follows: the number of people flowing from co-ed

dorms to Region 1 would be the variable C̃1 in Example 1,
the number of people flowing from co-ed dorms to Region 2

would be the variable C̃2, etc. This table satisfies our desired
constraints if and only if the total flow is equal to 98 + 98
(which means a total of 98 people flow into Region 1, some
from female and co-ed dorms but none from male dorms;
and a total of 98 people flow into Region 2, some from male
and co-ed dorms, but none from female dorms). Notice that
98 + 98 must be an upper bound on the maximum flow in
the network (because that is the most that is allowed to flow

into the sink) and so H̃0 is extendable if and only if the value
of the max flow is equal to 98+98. If there is such a max
flow, then it will also exist if the edge capacities F,C,M are

set to the actual amount of flow we put on these edges: F̃ ,

C̃, M̃ , respectively. Thus implied constraints on F̃ , C̃, M̃
are equivalent to constraints on the capacities F,C,M if we
add the condition that F + C +M = 98 + 98.

Thus, the question is under what conditions on F,C,M
does the maximum flow in the network have value 196. To
answer this question, we must examine all of the cuts and
ensure that every cut has value at least 98+98 (note that the
cut in which the sink is by itself has value equal to 98 + 98).
The cuts that have finite value are easy to determine because
we must avoid edges with infinite capacity going from the
sets S to T of the cut. Thus the cuts with finite value are:

• S = {Source, Nf , Nm, Nc, N1, N2} and T = {Sink},
where Nf , Nm, Nc are the nodes for female, male, and
co-ed dorms, and N1, N2 are the nodes for Regions 1
and 2. This cut has a value of 196.

• S = {Source, Nm, N2} and T = {Sink, N1, Nf , Nc}.
This cut has value F + C + 98.

• S = {Source, N2} and T = {Sink, N1, Nf , Nc, Nm}.
This cut has value F + C +M + 98.

• S = {Source, Nf , N1} and T = {Sink, N2, Nm, Nc}.
This cut has value M + C + 98.

• S = {Source, N1} and T = {Sink, N2, Nf , Nc, Nm}.
This cut has value F +M + C + 98.

• S = {Source} and T = {Sink, N1, N2, Nf , Nc, Nm}.
This cut has value F + C +M .

Thus we want F +C +M = 98 + 98 and each cut to have a
value at least 196. This results in the following inequalities:

F + C +M = 196 F ≥ 0

F + C ≥ 98 M ≥ 0

M + C ≥ 98 C ≥ 0

By the Max-Flow/Min-Cut theorem, there is a maximum
flow (with integer coefficients) equal to 196 if and only if
these constraints are satisfied, hence these are the complete

implied constraints on H̃0.

Generalization. We generalize this discussion as follows.
Suppose the cells of a histogram (e.g., the national his-
togram) are grouped into k buckets x1, . . . , xk (e.g., this a
partition of the space of demographic attributes). When we
add a geographic attribute, then for each bucket (i.e., com-
bination of demographic attributes) xj and for each leaf γi,
let xj,i be the number of people from region γi that would
fall in bucket xj . Thus, at each leaf γi we have a sum con-
straint:

∑
j xj,i = ni (where ni is a constant). For each leaf

γi and bucket xj we also have either the constraint xj,i = cj,i
or the constraint xj,i ≥ cj,i (where cj,i is a constant that is
at least 0).

Theorem 3. Consider an attribute R1 that can take k
values and R2 that can take m values. Let the base schema
S0 = {R1} and the extended schema be S = {R1, R2}. Let

H̃0 = (x1, . . . , xk) be a histogram constructed from a ta-
ble with schema S0. For histograms built from tables over
schema S, we will use the notation xj,i to refer to the count
of the number of people with R1 = j and R2 = i. Suppose
the external constraints have the following form:∑
j

xj,i = ni for i = 1, . . . ,m

xj,i opj,i cj,i where opj,i is either ≥ or =, for i=1,...,m
j=1,...,k

where the cj,i are all nonnegative and ni ≥
∑
j cj,i for all

i. For any set A ⊆ {1, . . . , k} let neigh(A) denote the set
{i | xj,i ≥ cj,i is a constraint for some j ∈ A}. Then a com-
plete set of implied constraints is:∑

j

xj =
∑
i

ni

∀j xj ≥
∑
i

cj,i

∀A ⊂ {1, . . . , k} :
∑
j∈A

(xj −
∑
i

cj,i) ≤
∑

i∈neigh(A)

(ni −
∑
j

cj,i)

For proof see Appendix F. The way to interpret the last set
of constraints (in terms of the group quarters setup of Exam-
ple 1) is the following: for any combination of group quarters
types, the total number of people living in them must be at
most the total population in all regions that have group
quarters of those types. Note that the constraints given by
this theorem are not the same as the constraints derived at
the beginning of this section, but they are equivalent.

In the next section we show that we can replace these
constraints with a more compact representation that, when

10
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added to the optimization problems used in the TopDown
algorithm, results in that algorithm always producing his-
tograms that can be extended to the leaves of the geographic
hierarchy.

7.3 Network flows during postprocessing.
The implied linear constraints on H̃0 that were gener-

ated by Theorem 3 have a drawback—there are exponen-
tially many in k (e.g., exponentially many in the number
of group quarters types). Since these constraints are im-
plicitly encoded in a much smaller network flow problem,
it turns out that we can make the constrained optimization
problem smaller by encoding network flows directly into the
optimization problems in Equations 6, 7, 9, and 11.

7.3.1 An Example
We will illustrate this approach first with a concrete ex-

ample (to avoid getting bogged down in notation) and then
present the general case. Consider reduced 3-level location
hierarchy:

• Leaves: Suffolk, Nassau, Queens, Washington, Kent,
Providence, Newport.

• States: NY (consisting of Suffolk, Nassau, Queens coun-
ties) and RI (consisting of Washington, Kent, Provi-
dence, Newport).

• National: here it consists of two states: NY and RI
(or more precisely, the parts of those states covered by
the chosen counties).

Suppose there are 3 GQ types: A (dorm), B (nursing
home), C (households) and the following public knowledge:

• Suffolk – Population: N0, Possible GQ: {A,C} with
min populations a0, c0, respectively

• Nassau – Population: N1, Possible GQ: {A,C} with
min populations a1, c1, respectively

• Queens – Population: N2, Possible GQ: {C} with min
population c2

• Washington – Population N3, Possible GQ: {A,B}
with min populations a3, b3, respectively

• Kent – Population N4, Possible GQ: {A,B} with min
populations a4, b4, respectively

• Providence – Population N5, Possible GQ: {A,C} with
min populations a5, c5, respectively

• Newport – Population N6, Possible GQ: {A,B} with
min populations a6, b6, respectively

Note that there are only 3 distinct GQ combinations: {A,C},
{A,B}, {C}. Suppose at each level of geography γ, the cor-
responding histogram Hγ is a 2 × 3 histogram on ethnicity
× GQ. So, for example, Hγ [0, 2] refers to the number of
non-Hispanic people in GQ type C.

Nation-level Solve. At the national level, we introduce a
variable gi for each group quarters type (g0 will count how
many people are in GQ of type A, etc) and a variable rj
for each GQ combination that appears in the leaves: r0
for {A,C}, r1 for {A,B}, r2 for {C}. We also define flow

variables fi,j for how many people from gi flow into a region
with gq combination rj . Eliminating impossible flows, we
get the variables f0,0 (people flowing from GQ A to region
with combination {A,C}), f0,1, f1,1, f2,0, f2,2. The point of
these flow variables is that they will show that it is possible
to extend our national level table in a way that satisfies
the external knowledge. That is the only role of the flow
variables. Once we get a solution, we discard them.

Given noisy measurements to the workload queries at the
national level (using the same notation as in Section 5.2),
we first solve the following least squares optimization:

arg min
H∗,gi,rj

∑
Qi∈W0

γ0

||Qi(H∗)−mγ0,i||
2
2 (19)

s.t. H∗[i, j] ≥ 0 (for all i, j)

1∑
i=0

2∑
j=0

H∗[i, j] =

6∑
`=0

N`

(define the gi)

g0 = H∗[0, 0] +H∗[1, 0]

g1 = H∗[0, 1] +H∗[1, 1]

g2 = H∗[0, 2] +H∗[1, 2]

g0 ≥ a0 + a1 + a3 + a4 + a5 + a6

g1 ≥ b3 + b4 + b6

g2 ≥ c0 + c1 + c2 + c5

(Lower bounds on flow)

f0,0 ≥ a0 + a1 + a5

f0,1 ≥ a3 + a4 + a6

f1,1 ≥ b3 + b4 + b6;

f2,0 ≥ c0 + c1 + c5

f2,2 ≥ c2
(flow out of g)

g0 = f0,0 + f0,1

g1 = f1,1

g2 = f2,0 + f2,2

(flow into r)

r0 = f0,0 + f2,0

r1 = f0,1 + f1,1

r2 = f2,2

(Populations in r)

r0 = N0 +N1 +N5

r1 = N3 +N4 +N6

r2 = N2

This problem finds an H∗ such that workload queries on
H∗ match the noisy answers as close as possible with the
following constraints. First, the entries of H∗ are nonnega-
tive. Second, the population total matches that of the real
data. Third, the set of equations define g0, g1, g2 (i.e., g0
consists of Hispanic and non-Hispanic people in GQ A) and
provide lower bounds on the amount of people in each GQ
type (obtained by adding the lower bounds of that GQ in
each region).

The next set of equations provide a lower bound on the
flow. The idea is that a flow variable fi,j is the number of
people in GQ type i that we want to move into a region

11
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with GQ combination j. For example f0,0 is the number
of people from GQ A that are assigned to regions having
GQ combination {A,C}. These regions are 0,1,5 (Suffolk,
Nassau, Providence) and require at least a0, a1, a5 people
in GQ A in each of them. Hence f0,0 ≥ a0 + a1 + a5.

The next set of equations define the flow out of the group
quarters types. For example, g0 will be the number of people
in GQ A. These people will only flow into regions with GQ
combinations {A,C} and {A,B} hence the total number of
people flowing out of GQ A is f0,0 + f0,1.

The next set of equations define the corresponding in-
flow. For example, regions with GQ combinations {A,C}
will receive flow from GQ A and GQ C, so r0 = f0,0 + f2,0.

The final set of equations list the population totals in re-
gions with the same GQ combinations. For example, regions
with GQ combination {A,C} have N0 +N1 +N5 people.

All but the first 3 lines of Equation 19 define the implied
constraints. These are the same implied constraints that we
will use for the L1 rounding part of the national solve (i.e.
we put those implied constraints into Equation 7).

Recursive Solve. We use the recursive solve to create the
child histograms (e.g., state-level histograms) from the na-
tional histogram. Then, for each state we create its child
histograms (e.g., county-level histograms). The construction
of implied constraints is similar—we create a set of implied
constraints for each child.

For example, when creating the state-level histograms from
the national histogram, we define gNY,0, gNY,1, gNY,2 to be
the populations in NY in GQ types A,B,C. We create rNY,0
for the GQ combination {A,C} and rNY,2 for the GQ com-
bination {C} (note there is no rNY,1 because there is no
combination {A,B} in NY). We set the lower bounds for
gNY,0, gNY,1, gNY,2 based on the leaves (counties) in NY,
we set the equality constraints on rNY,0 and rNY,2 from the
leaves (counties) in NY, etc. Then, we define flow variables
for NY that flow from GQ types into GQ combinations, etc.
For the child RI, we create a similar network flow.

7.3.2 The general case
For simplicity, we will discuss these extensions in the con-

text of group quarters facilities. That is there are ng types
of group quarters (“in a household” is considered one of
those types, and implies “not in group quarters”). For
i = 1, . . . , ng, we let Xi be the set of cells in the histogram

H̃0 that correspond to sub-populations that belong to group
quarters type i (note that Xi is then also the set of cells in

the histogram H̃1
NY that corresponds to the sub-populations

in NY in group quarters type i).
We will consider the following background knowledge on

the leaves: the types of GQ that are present in each leaf
is known and a lower bound on the population in each GQ
type in each leaf is known. If a GQ type is not present in a
leaf, there are no people in that GQ type in the leaf. The
public knowledge also includes the total population in each
leaf.

Nation-level solves. Now we discuss what constraints need
to be added to the national solves. We will introduce the
following variables/constants:

• First, we introduce a variable GQi for each gq type.
Let there be ng types. Recall Xi is the set of histogram

cells for people in GQ type i.

• For each GQ type, there is the corresponding constant
gqi equal to the sum (over all blocks) of the minimum
guaranteed population in GQ of type i.

• Let Y1, Y2, . . . be the distinct GQ combinations that
appear in some block (in our previous example, these
would be Y1 = {A,C}, Y2 = {A,B} and Y3 = {C}).
Let there be nc such combinations.

• For each Yi we introduce a variable CBi.

• For each Yi, let Ni be the total population in blocks
that have GQ combination Yi.

• Let H∗[1], ..., H∗[m] be the variables corresponding to
the national histogram cells that we want to solve for.

• We define flow variables Fij if a GQ type i appears in
combination j (i.e. if i ∈ Yj).

• For each legal flow Fij variable (i.e. i ∈ Yj), let fij be a
lower bound on it. fij looks at all blocks that have GQ
combination Yj and adds up the minimum populations
for GQ of type i in those blocks. In particular, this
means

∑
j fij = gqi.

At the national level, optimization problem with the added
network flow constraints are:

arg min
H∗,GQj ,CB`

∑
Qi∈W0

γ0

||Qi(H∗)−mγ0,i||
2
2 (20)

s.t. H∗[i] ≥ 0 (for i = 1, . . . ,m)
m∑
i=0

H∗[i] = Total Population

(define the GQi) (21)

GQj =
∑
i∈Xj

H∗[i] for j = 1, . . . , ng

GQj ≥ gqj for j = 1, . . . , ng

(Lower bounds on Flow)

Fij ≥ fij for all i, j with i ∈ Yj
(Flow out of GQ)

GQi =
∑

j : i∈Yj

Fij for i = 1, . . . , ng

(Flow into GQ combination regions)

CBj =
∑

i : i∈Yj

Fij for j = 1, . . . , nc

(Populations in GQ regions)

CBj = Nj for j = 1, . . . , nc

These constraints (following Eq 21) are the same added con-
straints that we use in place of the implied constraints in the
L1 solve (Equation 7):

H̃0 = arg min
H†
− (H† − bH∗c) · (H∗ − bH∗c) (22)

s.t. H† � 0 (nonnegativity)∑
x

H†[x] =
∑
x

H∗[x] (total sum constraint)

12
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H†[x]−H∗[x] ≤ 1 for all cells x

−H†[x] +H∗[x] ≤ 1 for all cells x

(define the GQi)

GQj =
∑
i∈Xj

H†[i] for j = 1, . . . , ng

GQj ≥ gqi for j = 1, . . . , ng

(Lower bounds on Flow)

Fij ≥ fij for all i, j with i ∈ Yj
(Flow out of GQ)

GQi =
∑

j : i∈Yj

Fij for i = 1, . . . , ng

(Flow into GQ combination regions)

CBj =
∑

i : i∈Yj

Fij for j = 1, . . . , nc

(Populations in GQ regions)

CBj = Nj for j = 1, . . . , nc

Theorem 4. Suppose the public knowledge is the follow-
ing: (1) the types of GQ that are present in each leaf, (2) the
lower bound on the population in each GQ type in each leaf,
(3) the total population in each leaf, (4) if a GQ type is not
present in a leaf, there are no people in that GQ type in the
leaf. The network flow constraints (following Eq 21), when
added to the L2 solve (Eq 6) without any other implied con-
straints (resulting in Eqn 20) produce a fractional histogram
at the national level that can be extended to fractional his-
tograms at the leaves that satisfy the public knowledge about
GQ populations.

For proof, see Appendix G.

Theorem 5. Suppose the public knowledge is the follow-
ing: (1) the types of GQ that are present in each leaf, (2)
he lower bound on the population in each GQ type in each
leaf, (3) the total population in each leaf, (4) if a GQ type
is not present in a leaf, there are no people in that GQ type
in the leaf. The network flow constraints (following Eq 21),
when added to the L1 solve (Eq 7) without any other implied
constraints (resulting in Equation 22), and solved using the
simplex algorithm, produce an integer histogram at the na-
tional level that can be extended to integer histograms at the
leaves that satisfy the public knowledge about GQ popula-
tions.

For proof, see Appendix H.

Recursive solves. The recursive solves involve adding a set
of network flow constraints for each child. This is straight-
forward, but for completeness, we provide the optimization
problems here. For this purpose, let Y τj refer to sets of GQ
combinations in leaves under child τ with Nτ

j being the to-
tal population of leaves under child τ with GQ combination
Y τj . Similarly, gqτi is the sum of the minimum populations
in GQ i for leaves under child τ and fτij looks at all blocks
under child τ that have GQ combination Y τj and add up
the minimum populations for GQ of type i in those blocks.
Again,

∑
j f

τ
ij = gqτi . ng is the number of group quarters

types (does not depend on τ) and nτc is the number of group
quarter combinations appearing in leaves of child τ . We
introduce variables GQτ , F τij , CB

τ .

The L2 solve is:

arg min
H∗1 ,...,H

∗
m

m∑
τ=1

∑
Q`∈W

i+1
γτ

||Q`(H∗τ )−mγτ ,`||
2
2 (23)

s.t. H∗τ � 0 for all τ
m∑
τ=1

H∗τ [x] = H̃i
γ [x] for all cells x

Q′`(H
∗
τ ) op` c` is true for all τ

(define the GQτi )

GQτj =
∑
i∈Xj

H∗τ [i] for j = 1, . . . , ng and all τ

GQτj ≥ gqτj for j = 1, . . . , ng

(Lower bounds on Flow)

F τij ≥ fτij for all τ and i, j with i ∈ Y τj
(Flow out of GQ)

GQτi =
∑

j : i∈Y τj

F τij for all τ and i = 1, . . . , ng

(Flow into GQ combination regions)

CBτj =
∑

i : i∈Y τj

F τij for all τ and j = 1, . . . , nτc

(Populations in GQ regions)

CBτj = Nτ
j for all τ and j = 1, . . . , nτc

and the L1 solve is:

H̃i+1
γ1 , . . . , H̃i+1

γm (24)

= arg min
H
†
1 ,...,H

†
m

m∑
τ=1

−(H†τ − bH∗τ c) · (H∗τ − bH∗τ c) (25)

s.t. H†τ � 0 for all τ

H†τ [x]−H∗τ [x] ≤ 1 for all τ and cells x

−H†τ [x] +H∗τ [x] ≤ 1 for all τ and cells x∑
τ

H†τ [x] = H̃i
γ [x] for all cells x

(define the GQτi )

GQτj =
∑
i∈Xj

H∗τ [i] for j = 1, . . . , ng and all τ

GQτj ≥ gqτj for j = 1, . . . , ng

(Lower bounds on Flow)

F τij ≥ fτij for all τ and i, j with i ∈ Y τj
(Flow out of GQ)

GQτi =
∑

j : i∈Y τj

F τij for all τ and i = 1, . . . , ng

(Flow into GQ combination regions)

CBτj =
∑

i : i∈Y τj

F τij for all τ and j = 1, . . . , nτc

(Populations in GQ regions)

CBτj = Nτ
j for all τ and j = 1, . . . , nτc
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Theorem 6. Suppose the public knowledge is the follow-
ing: (1) the types of GQ that are present in each leaf, (2)
the lower bound on the population in each GQ type in each
leaf, (3) the total population in each leaf, (4) if a GQ type
is not present in a leaf, there are no people in that GQ type
in the leaf. The network flow constraints, when added to the
L2 solve without any other implied constraints (resulting in
Eqn 23) produce a fractional child histogram that can be ex-
tended to fractional histograms at the leaves that satisfy the
public knowledge about GQ populations.

For proof, see Appendix I.

Theorem 7. Suppose the public knowledge is the follow-
ing: (1) the types of GQ that are present in each leaf, (2)
the lower bound on the population in each GQ type in each
leaf, (3) the total population in each leaf, (4) if a GQ type
is not present in a leaf, there are no people in that GQ type
in the leaf. The network flow constraints, when added to
the L1 solve without any other implied constraints (result-
ing in Equation 25), and solved using the simplex algorithm,
produce an integer child histogram that can be extended to
integer histograms at the leaves that satisfy the public knowl-
edge about GQ populations.

For proof, see Appendix J.

7.4 Composing Implied Constraints
In general, constraints do not compose well—for a con-

straint set A it may be easy to find a complete set of im-
plied constraints, and for a constraint set B it may be easy
to find a complete set of implied constraints, but for the
constraint set A ∪ B it might be infeasible to find a com-
plete set of implied constraints. A simple example is if A is
the set of equality constraints on a one-way marginal on an
attribute that can have at least 3 values and B is the set
of equality constraints on a one-way marginal on a different
attribute that can have at least 3 values. Each set is easy
by itself, but combining A and B results in an NP-complete
problem (Theorem 2). In this section we consider special
cases where constraints compose. In particular, we identify

situations in which adding (or removing) a constraint on H̃

does not affect the implied constraints on H̃0.

7.4.1 Structural Zero Cells
Let Z be a set such that for every leaf node τ , the demo-

graphic characteristics histogram H̃τ at that leaf must have

zeros in the cells specified by Z (i.e. H̃τ [i] = 0 for all i ∈ Z).
The next result shows that these structural zero cells do not
interfere with implied constraints.

Theorem 8. Let H̃p be a demographic characteristics his-

togram at node p that we must extend to histograms H̃τ1 , . . . , H̃τk ,
where τ1, . . . , τk are the leaf nodes under p. For each τi, let

Cτi be a set of constraints on H̃τi and let Cp be a complete

set of implied constraints for H̃p. Let Z be a set of in-

dices. Define C†τi = Cτi ∪
{
H̃τi [j] = 0 | j ∈ Z

}
and C†p =

Cp ∪
{
H̃p[j] = 0 | j ∈ Z

}
. Then C†p is a complete set of im-

plied constraints for C†τ1 , . . . , C
†
τk .

For proof see Appendix K.

8. APPLICATIONS TO INVARIANTS UN-
DER CONSIDERATION FOR THE 2020
CENSUS

We first describe the 2020 Census data that are the inputs
to the TopDown algorithm. Second we list the potential
invariants. Finally we show how the algorithms developed
in this paper will be applied.

8.1 Detailed Description of Census Data
The microdata used to generate PL94-171 data can be

viewed as a table with the following attributes:

• R: Race. It has 63 possible values. Each value corre-
sponds to a non-empty subset of the following 6 OMB
categories: American Indian or Alaskan Native, Asian,
Black or African American, Native Hawaiian or Other
Pacific Islander, White, Other.

• E: Ethnicity. It has 2 values: Hispanic or Latino, and
not Hispanic or Latino.

• V: Voting Age Status. It has 2 values: whether a
person has age ≥ 18, or age < 17.

• H: Housing/Group Quarters status. There are 8 pos-
sible values that describe the type of housing an indi-
vidual lives in: household, Correctional Facilities for
Adults, Juvenile Facilities, Nursing Facilities/Skilled-
Nursing Facilities, Other Institutional Facilities, Col-
lege/University Student Housing, Military Quarters,
Other Noninstitutional Facilities.

• L: Location. It represents the 2020 Census tabulation
block that an individual lives in. This is a hierarchical
attribute that is coded as a 15 digit number. The first
2 digits represent the state; the next 3 represent the
county within the state; the next 6 refer to tract within
county; the last 4 refer to block within tract. The first
digit of the block code is called the block group. There
were over 6.2 million inhabited blocks in 2010.

For Demographic and Housing Characteristics (DHC)-Persons,
the microdata table used to generate person-level tabula-
tions formerly denoted Summary File 1 [37], is an extension
of the table used to create PL94-171. DHC-Persons adds
the following information:

• S. Sex: two values (male, female).

• A. Detailed age (0-115). It extends the V attribute
(voting age status).

• RH. Relation to householder. It has 43 values and ex-
tends the H attribute (Housing/Group Quarters sta-
tus). For people living in households, the 15 possi-
ble values in 2010 were householder, husband or wife,
biological son or daughter, adopted son or daughter,
stepson or stepdaugther, brother or sister, father or
mother, grandchild, parent-in-law, son-in-law or daughter-
in-law, other relative, roomer or boarder, housemate or
roommate, unmarried partner, other nonrelative. For
people living in group quarters, there are 28 possible
values that provide more detail than the H attribute.
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8.2 Invariants and Structural Zeros
We have the following invariants for PL94-171, as imple-

mented for the 2018 End-to-End Census Test: 6

1. Number of housing units in each block is invariant.
Equivalent to upper bounds on number of household-
ers.

2. Number of occupied group quarters by major type (7
levels) in each block is invariant. Equivalent to lower
bounds on number of people with living in that type
of GQ in each block.

3. Population of each state is invariant (under consider-
ation is also an alternative where the block-level pop-
ulation is invariant).

For the DHC-Persons table, in addition to the PL94-171
invariants, we have the following invariant:

1. Number of occupied group quarters by detailed type
(29 levels) by single-sex status (3 levels) is invariant.
Equivalent to lower bounds on number of people with
certain sex and GQ attribute combinations in persons
table.

DHC-Persons also has the following structural zeros:

1. Some GQ are single sex or co-ed

2. Some GQ have upper and lower bounds on age.

3. Householder age must be at least 15

4. Number of householders ≥ number of spouses and un-
married partners

5. Number of householders ≤ 2 times number of parents
of householder

6. Number of householders ≤ 4 times number of grand-
parents of householder

7. Each block that contains a person living in a household
must also have a householder

8. Children of householder must have certain age gap
with householder

9. Parents of householder must have a certain age gap
with householder

10. Grandparents of householder must have a certain age
gap with householder

8.2.1 Enforced Invariants and Structural Zeros
When the initial table includes attributes on detailed GQ

type (or whether a person lives in a household and is or is
not a householder), age, and sex, it is possible to enforce all
of the PL94 invariants and the DHC invariants related to
group quarters using the network flows of Section 7.3. The
structural zeros from Items 1, 2, 3 can also be incorporated
by Theorem 8.

6There was only one county, Providence, RI, in the End-
to-End Test, so the state-level population invariant was ac-
tually a county population invariant. In addition, occupied
housing units were invariant in the End-to-End test, but
that invariant has now been removed.

8.2.2 Unenforced Structural Zeros
When constructing the histogram corresponding to the

DHC-Persons table, we note that some of the structural ze-
ros are not linear constraints on the histogram—Items 7, 8,
9, 10. Except in rare situations (e.g., a block has no GQ
and at most 1 housing unit), we can only directly verify
that these constraints hold if we have a household identifier
attribute, and even then, verification of those constraints
involves multiple self-joins between the resulting table. It is
an open problem how to derive implied constraints in such
a situation.

Thus, when creating the DHC-Persons table, these con-
straints will not be enforced except on a best-effort basis.
For example, if there is a block with no GQ but at most
1 housing unit, then all the generated people records are
from the same household. We may edit the age or relation
attribute to ensure the structural zeros hold at that block.

8.2.3 Partially Enforced Structural Zeros
Items 4, 5, 6 are linear constraints on a one-way marginal

at each block. Note that adding one-way marginal con-
straints to other constraints can make finding implied con-
straints NP-hard (for example adding a one-way equality
constraint). Thus, if the full relation to householder vari-
able is used in the initial table, we can add (to our existing
implied constraints) linear equations corresponding to Items
4, 5, 6 at each level of geography. If infeasibility occurs in
any of the solves performed by TopDown, the solve can be
redone without the constraints corresponding to Items 4, 5,
6. Since this solve only uses the original implied constraints
based on network flows, it will be feasible (by definition of
implied constraints). After TopDown finishes, it may be pos-
sible to add an edit phase, similar to the Fellegi-Holt model
[11] to resolve them. One idea is that if the number of blocks
for which Items 4, 5, 6 fail to hold is relatively small, we can
set up an integer linear program to correct those variables
while minimizing the change in an objective function (such
as the error in answering the queries for which we have noisy
measurements).

9. THE FAILSAFE
The TopDown algorithm solves a series of constrained op-

timization problems and uses careful analyses of the con-
straints to ensure that they are feasible. However, in a
complex system, occasional infeasibility should be expected.
This can happen either as a bug in setting up the quadratic/linear/integer
program or when some implied constraints are omitted for
performance reasons.

When a histogram H̃i at level i of the hierarchy is be-
ing extended (for example, when a demographic character-
istics histogram at the county level is being extended to
histograms at the tract level) either the L2 or the L1 solve
may fail. When this happens, the failsafe (a backup piece
of code), is invoked. It consists of the following steps.

1. First, a distance to feasibility is computed. The con-
straint that the child histograms add up to the parent
histogram is removed. The objective function is also
removed. Instead, the optimization problem uses the
rest of the constraints (which are constraints on the
children) and tries to find a set of child histograms
that satisfies those constraints, while minimizing the
L1 distance between the sum of the child histograms
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and H̃i (in the L1 metric). This distance, denoted d∗,
is the distance to feasibility.

2. Now we take the infeasible optimization problem, re-
move the constraint that the child histograms add up
to the parent, and add the constraint that the L1 dis-

tance between the sum of the children and H̃i is at
most d∗ + 1 (the +1 is a fudge factor). For attributes
that are not involved in the implied constraints, we

also force the marginal of H̃ on those attributes to
equal the sum of the child marginals. In particular,
this forces the sum of the populations in the child

nodes to equal the population in H̃i. Assuming that
there exist child nodes that satisfy the implied con-
straints (or the subset of those constraints that was
implemented) with population totals that add up to

the population total in H̃i, then the marginal con-
straints (involving attributes that are not part of the
implied constraints) do not cause infeasibility. Intu-
itively, this is because we can arbitrarily redistribute
those demographic characteristics among the children
without affecting any of the implied constraints.

10. CONCLUSIONS AND FUTURE WORK
This paper presents a description of the TopDown al-

gorithm that is being developed to produce differentially
private microdata for the 2020 Census of Population and
Housing. The algorithm creates an initial set of microdata
and then extends it (for example, by adding geographic at-
tributes to the records). The key technical challenge of this
algorithm is to preserve invariants—certain queries where
the differentially private data must exactly match the true
data. Invariants lead to implied constraints which ensure
that a set of microdata can be extended with additional at-
tributes while satisfying the invariants. Generally, finding
implied constraints is intractable. In some cases where the
implied constraints are not intractable, network flows can
be used to find them.
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APPENDIX
A. IMPLIED CONSTRAINTS FROM EQUALITY-

CONSTRAINT COUNT QUERIES

Example 3. Suppose the only variables we are interested
in are geography RG (which state a person is in), voting
age status RV (whether a person is voting age or not, and
householder status RH (whether a person is a householder
or not). Only the national-level histogram will be published.
However there is public knowledge at the state level state: the
one-dimensional marginal on RV and the one-dimensional
marginal on RH are known exactly. For our simple example,
suppose we only have 2 states A and B.

Region A Invariants
RV = 0 RV = 1

RH = 0 ? ? 5
RH = 1 ? ? 15

15 5

Region B Invariants
RV = 0 RV = 1

? ? 15
? ? 5
5 15

What conditions should the national level histogram satisfy
so that it can be extended to state level histograms having
those row and column sums? A naive, but intuitive, sug-
gestion is that the margins of the national histogram should
equal the sum of the margins of the state level histograms as
follows:

Aggregate Invariants?
RV = 0 RV = 1 row sum

RH = 0 z1 z2 20
RH = 1 z3 z4 20
col sum 20 20

It turns out that these conditions are not sufficient. The fol-
lowing table satisfies the proposed restrictions at the national
level yet it cannot be extended to the state level.

Aggregate Invariants Counterexample
RV = 0 RV = 1 row sum

RH = 0 11 9 20
RH = 1 9 11 20
col sum 20 20

This counterexample contains 11 records with attributes RH =
0, RV = 0. We know there can be at most 5 such records in
State A (because there are at most 5 records with RH = 0
in State A) and at most 5 such records in State B (be-
cause there are at most 5 records with RV = 0 in State B).
Hence, the national level data had too many records with
RH = 0, RV = 0. It turns out that an additional constraint
is needed at the national level: z1 ∈ [0, 10].
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B. PROOF OF THEOREM 1

Proof. Clearly the problem is in NP. We do a reduction
from 3-SAT. Let φ be a 3-SAT formula with w variables
and c clauses. We define two attributes R1 with domain
Ω1 = {1, 2, . . . , w} and R2 with domain Ω2 = {0, 1}. We
set our schemas to be S0 = {R1} and S = {R1, R2}. We

set the corresponding histogram H̃0 to be w-dimensional
vector [1, 1, 1, . . . , 1]. Then we define the constraint set C
(over histograms of dimension w× 2) so that it encodes the

3-SAT problem φ. The intuition is that we would like H̃[j, 0]

to encode the truth value of variable vj and H̃[j, 1] to encode
the truth value of ¬vj .

So, for every clause involving, say, variables vi, vj , v` we

add the linear constraint H̃[i, a]+H̃[j, b]+H̃[`, c] ≥ 1, where
a = 1 if vi is negated and 0 if vi is not negated. Similarly,
b and c, respectively, encode whether vj and v` are negated
or not. Thus there are a total of c inequality constraints.

The fact that H̃ is supposed to be an extension of our

chosen H̃0 means that H̃[i, 0] + H̃[i, 1] = 1 for all i. Now,

the entries of H̃ must be nonnegative integers, so this means

that for all i, either H̃[i, 0] = 1 or H̃[i, 1] = 1 and so H̃ can
be interpreted as a truth value assignment for each variable.

Clearly, if H̃0 can be extended into a histogram H̃ that
satisfies C then this gives us a satisfying assignment for 3-
SAT and any satisfying assignment for 3-SAT produces a

histogram H̃ that satisfies C and extends H̃0. Thus the
decision problem is NP-complete.

C. PROOF OF THEOREM 2

Proof. This is equivalent to the 3-table/2-marginal ex-
istence problem [26]. In this problem, there are three at-
tributes A,B,C and one specifies a histogram H1 on at-
tributes A,B, H2 on attributes B,C and H3 on attributes
A,C. The problem is to determine if there is a histogram
H on A,B,C that is consistent with H1, H2, H3 (that is,
H1, H2, H3 should be the two-way marginals of H – if we add
up H over the third dimension, we should obtain H1, adding
up over the first dimension should yield H2 and adding up
over the second dimension should yield H3). In this prob-
lem, if all attributes have domain size at least 3, then the
problem is NP-complete in the domain size of A and B (i.e.,
even if we fix |C| = 3).

In our case, the full histogram we want to construct is H̃,
a histogram on 3 attributes {R1, R2,Location}. We start

with H̃0, a histogram on {R1, R2}. Thus H̃0 would be a two-

dimensional marginal of H̃. Meanwhile, the one-dimensional
histogram on R1 at each location can be represented as a
two-dimensional histogram over {R1,Location} (again, it is

supposed to be a 2-d marginal of H̃) and similarly, the one-
dimensional histogram on R2 at each location can be repre-
sented as a two-dimensional histogram over {R2,Location}
(also, it is supposed to be a 2-d marginal of H̃). Thus we
have 3 two-dimensional marginals and are asking if there

exists a table H̃ that is consistent with all of them. This is
exactly the same as the 3-table/2-marginal existence prob-
lem [26].

D. FME IN ACTION IN EXAMPLE 2

We write out the full constraints:

hA[0, 0] + hA[0, 1] = 6 hB [0, 0] + hB [0, 1] = 15 (26)

hA[1, 0] + hA[1, 1] = 16 hB [1, 0] + hB [1, 1] = 5 (27)

hA[0, 0] + hA[1, 0] = 17 hB [0, 0] + hB [1, 0] = 5 (28)

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15 (29)

hA[0, 0] ≥ 0 hA[0, 1] ≥ 0 hA[1, 0] ≥ 0 hA[1, 1] ≥ 0 (30)

hB [0, 0] ≥ 0 hB [0, 1] ≥ 0 hB [1, 0] ≥ 0 hB [1, 1] ≥ 0 (31)

h[0, 0] = hA[0, 0] + hB [0, 0] h[0, 1] = hA[0, 1] + hB [0, 1] (32)

h[1, 0] = hA[1, 0] + hB [1, 0] h[1, 1] = hA[1, 1] + hB [1, 1] (33)

First we use Gaussian Eliminatin to replace hA[0, 0] in
Equations 28, 30,32 with 6− hA[0, 1] (obtained from Equa-
tion 26. This results in

hA[0, 0] + hA[0, 1] = 6 hB [0, 0] + hB [0, 1] = 15

hA[1, 0] + hA[1, 1] = 16 hB [1, 0] + hB [1, 1] = 5

6− hA[0, 1] + hA[1, 0] = 17 hB [0, 0] + hB [1, 0] = 5

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15

6− hA[0, 1] ≥ 0 hA[0, 1] ≥ 0 hA[1, 0] ≥ 0 hA[1, 1] ≥ 0

hB [0, 0] ≥ 0 hB [0, 1] ≥ 0 hB [1, 0] ≥ 0 hB [1, 1] ≥ 0

h[0, 0] = 6− hA[0, 1] + hB [0, 0] h[0, 1] = hA[0, 1] + hB [0, 1]

h[1, 0] = hA[1, 0] + hB [1, 0] h[1, 1] = hA[1, 1] + hB [1, 1]

Then we use FME to eliminate hA[0, 0] altogether. Note that
it only appears in one place: hA[0, 0] + hA[0, 1] = 6, which can
be rewritten as hA[0, 0] ≥ 6−hA[0, 1] and hA[0, 0] ≤ 6−hA[0, 1].
Applying the FME technique to these two inequalities yields the
vacuous inequality 6−hA[0, 1] ≥ 6−hA[0, 1] that can be dropped.
Thus we get:

hB [0, 0] + hB [0, 1] = 15

hA[1, 0] + hA[1, 1] = 16 hB [1, 0] + hB [1, 1] = 5

6− hA[0, 1] + hA[1, 0] = 17 hB [0, 0] + hB [1, 0] = 5

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15

6− hA[0, 1] ≥ 0 hA[0, 1] ≥ 0 hA[1, 0] ≥ 0 hA[1, 1] ≥ 0

hB [0, 0] ≥ 0 hB [0, 1] ≥ 0 hB [1, 0] ≥ 0 hB [1, 1] ≥ 0

h[0, 0] = 6− hA[0, 1] + hB [0, 0] h[0, 1] = hA[0, 1] + hB [0, 1]

h[1, 0] = hA[1, 0] + hB [1, 0] h[1, 1] = hA[1, 1] + hB [1, 1]

We can apply the same process to hA[1, 0] to obtain:

hB [0, 0] + hB [0, 1] = 15

hB [1, 0] + hB [1, 1] = 5

6− hA[0, 1] + 16− hA[1, 1] = 17 hB [0, 0] + hB [1, 0] = 5

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15

6− hA[0, 1] ≥ 0 hA[0, 1] ≥ 0 16− hA[1, 1] ≥ 0 hA[1, 1] ≥ 0

hB [0, 0] ≥ 0 hB [0, 1] ≥ 0 hB [1, 0] ≥ 0 hB [1, 1] ≥ 0
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h[0, 0] = 6− hA[0, 1] + hB [0, 0] h[0, 1] = hA[0, 1] + hB [0, 1]

h[1, 0] = 16− hA[1, 1] + hB [1, 0] h[1, 1] = hA[1, 1] + hB [1, 1]

We can repeat the same procedures for hB [0, 0] and then hB [1, 1]
to obtain:

6− hA[0, 1] + 16− hA[1, 1] = 17 15− hB [0, 1] + 5− hB [1, 1] = 5

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15

6 ≥ hA[0, 1] ≥ 0 16 ≥ hA[1, 1] ≥ 0

15 ≥ hB [0, 1] ≥ 0 5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 6− hA[0, 1] + 15− hB [0, 1] h[0, 1] = hA[0, 1] + hB [0, 1]

h[1, 0] = 16− hA[1, 1] + 5− hB [1, 1] h[1, 1] = hA[1, 1] + hB [1, 1]

In these new set of equations, the first line is equivalent to the
second, so we can drop it to get

hA[0, 1] + hA[1, 1] = 5 hB [0, 1] + hB [1, 1] = 15

6 ≥ hA[0, 1] ≥ 0 16 ≥ hA[1, 1] ≥ 0

15 ≥ hB [0, 1] ≥ 0 5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 6− hA[0, 1] + 15− hB [0, 1] h[0, 1] = hA[0, 1] + hB [0, 1]

h[1, 0] = 16− hA[1, 1] + 5− hB [1, 1] h[1, 1] = hA[1, 1] + hB [1, 1]

We now eliminate hA[0, 1] using the same procedures as before
(a Gaussian elimination to remove it from all but one equation,
followed by FME) and then do the same for hB [0, 1].

6 ≥ 5− hA[1, 1] ≥ 0 16 ≥ hA[1, 1] ≥ 0

15 ≥ 15− hB [1, 1] ≥ 0 5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 6− (5− hA[1, 1]) + 15− (15− hB [1, 1])

h[0, 1] = 5− hA[1, 1] + 15− hB [1, 1]

h[1, 0] = 16− hA[1, 1] + 5− hB [1, 1]

h[1, 1] = hA[1, 1] + hB [1, 1]

Removing redundant inequalities (and simplifying the equali-
ties), we get

5 ≥ hA[1, 1] ≥ 0

5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 1 + hA[1, 1] + hB [1, 1])

h[0, 1] = 20− (hA[1, 1] + hB [1, 1])

h[1, 0] = 21− (hA[1, 1] + hB [1, 1])

h[1, 1] = hA[1, 1] + hB [1, 1]

We use the last equation with Gaussian elimination to get

5 ≥ hA[1, 1] ≥ 0

5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 1 + h[1, 1])

h[0, 1] = 20− h[1, 1]

h[1, 0] = 21− h[1, 1]

h[1, 1] = hA[1, 1] + hB [1, 1]

Rewriting the last equation:

5 ≥ hA[1, 1] ≥ 0

5 ≥ hB [1, 1] ≥ 0

h[0, 0] = 1 + h[1, 1])

h[0, 1] = 20− h[1, 1]

h[1, 0] = 21− h[1, 1]

h[1, 1] ≥ hA[1, 1] + hB [1, 1]

h[1, 1] ≤ hA[1, 1] + hB [1, 1]

Then applying FME to hA[1, 1] and then hB [1, 1], we get

h[0, 0] = 1 + h[1, 1])

h[0, 1] = 20− h[1, 1]

h[1, 0] = 21− h[1, 1]

10 ≥ h[1, 1] ≥ 0

E. PROOF OF LEMMA 1
Proof. Note that since external knowledge is assumed to be

self-consistent, we must have r`[0] + r`[1] = c`[0] + c`[1] as both
sides of the equation represent the total population in region γ`.

The proof using FME is long and tedious, so instead we opt for
a simpler proof that shows why these are the correct constraints.
Note that these constraints are redundant (any one of the equality
constraints can be dropped).

First note h`[1, 1] ≤ min(r`[1], c`[1]) (because the count in that
cell is at most the count in that row or that column). For the same
reason, h`[0, 1] ≤ min(r`[0], c`[1]). Since h`[1, 1]+h`[0, 1] = c`[1],
we must have h`[1, 1] ≥ c`[1]−min(r`[0], c`[1]) (in particular, this
means that c`[1]−min(r`[0], c`[1]) ≤ h`[1, 1] ≤ min(r`[1], c`[1])).
Since h[1, 1] =

∑
` h`[1, 1], an upper (resp lower) bound on h[1, 1]

can be obtained by summing up the upper (resp lower) bounds
on the h`[1, 1]. Hence the proposed constraints are necessary.

To show that the proposed constraints are sufficient, we con-
struct integer histograms h` (consistent with external knowledge)
from a nonnegative integer histogram h that satisfies the claimed
constraints. First we set values for h`[1, 1] for all `. This can
be done with the following iterative procedure: First, note that

1 function Allocate():
// Set values for h`[1, 1]

2 leftover ← h[1, 1] for ` = 1, . . . ,m do
3 amount ← c`[1]−min(r`[0], c`[1])
4 h`[1, 1]← amount
5 leftover ← leftover - amount

6 end
7 `← 1
8 while leftover > 0 do
9 increment ← min(r`[1], c`[1])− h`[1, 1]

h`[1, 1]← h`[1, 1] + min(increment,leftover)
10 leftover ← leftover - min(increment,leftover)

11 end
// Set values for all other entries of h`

12 for ` = 1, . . . ,m do
13 h`[0, 1] = c`[1]− h`[1, 1]
14 h`[1, 0] = r`[1]− h`[1, 1]
15 h`[0, 0] = c`[0]− h`[1, 0]

16 end
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this procedure constructs the leaf histograms h` that have integer
entries. We need to prove the entries are nonnegative, satisfy the
appropriate row and column constraints, and that they add up
to h.

It is easy to see that right before line 12,
∑
` h`[1, 1] = h[1, 1].

Furthermore, after line 7, it maintains the invariant that 0 ≤
c`[1]−min(r`[0], c`[1]) ≤ h`[1, 1] ≤ min(r`[1], c`[1]) and after the
algorithm finishes, it is easy to see that

∑
` h`[i, j] = h[i, j] for

i = 0, 1 and j = 0, 1 and they satisfy the row and column sum
equality constraints from external knowledge. Thus we just need
to show that the h`[i, j] are nonnegative.

Since the algorithm, after line 7, maintains the invariant that
h`[1, 1] ≤ min(r`[1], c`[1]), then h`[0, 1] and h`[1, 0] are nonnega-
tive by construction. Finally, we use the lines 14 and 15 to show:

h`[0, 0] = c`[0]− h`[1, 0]

= c`[0]− (r`[1]− h`[1, 1])

= h`[1, 1] + c`[0]− r`[1]

≥ c`[1]−min(r`[0], c`[1]) + c`[0]− r`[1]

= r`[0] + r`[1]−min(r`[0], c`[1])− r`[1]

(since r`[0] + r`[1] = c`[0] + c`[1] by self-consistency

of external knowledge)

= r`[0]−min(r`[0], c`[1])

≥ 0

F. PROOF OF THEOREM 3
Proof. We first consider the case where the cj,i are all 0 and

then consider the general case. Construct a network with a source
node s and sink node t. For j = 1, . . . , k create nodes labeled Xj
and place a directed edge from s to Xj with capacity xj . For
i = 1, . . . ,m create a node labeled Yi and place a directed edge
from Yi to t with edge weight ni. For each pair Xj and Yi, add a
directed edge from Xj to Yi if the constraint involving is xi,j ≥ 0
(i.e., it is not equal to 0). This is the same construction as used
in Figure 7.2.

The flow incoming toXj will be interpreted as the total number
of people in demographic bucket j. The capacity constraint limits
it to be at most xj and we want the maximum flow to have those
edges equal to their capacities.

The flow coming out from Yi to the sink T is interpreted as
the total number of people in region γi. The capacity constraint
limits it to be at most ni and we want the maximum flow to have
those edges equal to their capacities.

The flow between Xj and Yi is interpreted as the number of
people from bucket j who belong to region γi. The conservation
of flow means that the total flow on edge coming into Yi must
be at most ni (since that is a bound on the outgoing flow from
Yi). Hence, if we find a maximum integer flow in which the edges
coming out of the sink are saturated (equal to their capacity)
and the edges coming into the source are saturated, and the flow
values are all integers, then setting xj,i equal to the flow from Xj
to Yi is the desired extension of H̃0.

Since we want the maximum flow to saturate the edges coming
out of S and going into T , we need the constraint∑

j

xj =
∑
i

ni (34)

and we need the maximum flow to equal
∑
i ni. By the max-

flow/min-cut theorem, we want the minimum cut S, T to be at
least

∑
i ni (the cut where S = {s} and T contains everything

else already equals
∑
j xj =

∑
i ni). We can avoid considering

cuts where an edge with infinite capacity leaves S. This gives us
the rules:

1. If S contains a node Xj then it must also contain all Yi for
which xj,i ≥ 0.

2. If S contains all the Yi that an Xj that points to, then we
can reduce the cost of the cut by putting that Xj in S (so

that the capacity on the edge s → Xj does not add to the
cost).

Thus the cuts we need to consider are of the form {s} ∪ A ∪ B
where A is a subset of the Xj and B contains all the Yi what
are pointed to by nodes in A. The cost of this cut is the sum
of capacities on edges from s to the Xj that are not in A plus
the sum of capacities on edges from B to the sink t and we must
require it to be at least

∑
i ni (the minimum cut cost we want).

Item 2 also suggests that if two regions Yi1 and Yi2 have exactly
two same incoming neighbors, then we can merge those two nodes
(and the capacity of the outgoing edge from the merged node to
t is the ni1 + ni2 (thus we only need to deal with equivalence
classes of regions that have the same set of incoming neighbors,
and this makes the network smaller).

Thus, a complete set of implied constraints is:∑
j

xj =
∑
i

ni

for all A ⊂ {1, . . . , k} :
∑
i

ni −
∑
j∈A

xj +
∑

i∈neigh(A)

ni ≥
∑
i

ni

where neigh(A) is the set of i such that there is an edge from
some Xj ∈ A to Yi which is the set of regions i for which xj,i is
not forced to be 0. After re-arranging, we get∑

j

xj =
∑
i

ni

for all A ⊂ {1, . . . , k} :
∑
j∈A

xj ≤
∑

i∈neigh(A)

ni

Now, for the general case where the cj,i are not necessarily 0, we
note that we can reduce this to the above problem by removing
cj,i people from each demographic bucket xj in location γi so
that we can work with variables x′j = xj −

∑
i cj,i and constants

n′i =
∑
j cj,i and so we also need the conditions that xj ≥

∑
i cj,i

and ni ≥
∑
j cj,i.

G. PROOF OF THEOREM 4
Proof. Initial placement: Note that the original data pro-

vides a feasible solution to the constraints, so the optimization
problem will produce a fractional histogram. To create an exten-
sion to the leaves, for each leaf, we put in the minimum number
of people in each GQ that it has. The leaf histograms under
construction now satisfy all the GQ constraints and we need to
allocate the rest of the people to satisfy the known population
constraints. Let φ` be the number of people assigned to leaf ` in
this phase and let n` be its known population (note n` ≥ φ`).

Excess flow: After accounting for this initial placement of
people, each flow Fij from a GQ of type i to the set of leaves
with GQ combination Yj is reduced by fij . The network flow
constraints ensure that Fij − fij ≥ 0 (call Fij − fij the excess
flow from i to j). For each i, this leaves Gi−qqi fractional people
in group quarters type i to redistribute among the leaves (since
gqi =

∑
j fij). Arbitrarily partition the fractional people in cells

belonging to Xi (cells of H∗ that correspond to people in GQ of
type i) so that Fij − fij of them are set aside for the set of leaves
with GQ combination Yj .

Now fractional people in the excess flow are assigned to each
set of leaves having the same GQ combination. For each GQ
combination Yj , the total number of people assigned to leaves
with that combination (based on the excess flow and the initial
placement) matches the total population of those leaves, by the
network flow constraints. Thus there are Mj people from the
excess flow assigned to leaf set corresponding to Yj and each leaf
` already has φ` people assigned to it. To each leaf we can assign
arbitrary people as long as they come from a GQ belonging to
combination Yj and the population limit of leaf ` is not exceeded.
Noting that Mj =

∑
n` − φ` (where the summation is over the

leaves associated with GQ combinations Yj), we can randomly
assign

∑
n` − φ` of the excess flow to leaf `, thus letting it reach

its population total.
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H. PROOF OF THEOREM 5
Proof. Note that the fractional histogram H∗ produced by

the L2 solve provides a feasible point that satisfies the constraints
in the L1 problem. Thus we need to show that the problem is to-
tally unimodular (so that the histogram H† and its flow variables
are all integer valued in the solution). After that, the same allo-
cation arguments as in Theorem 4 apply to show that this integer
histogram can be extended to integer leaf histograms. Since an
optimal solution to a constrained L1 minimization lies at one of
the corner points of the simplex of feasible values, it is enough to
make sure that all of the corner points are integers. We do this
by showing that any square sub-matrix of the constraint matrix
has a determinant of 1, 0 or −1.

We will make heavy use of the following fact. Suppose a matrix
A′ has a row or a column that has only one nonzero entry, and
that entry is ±1 and occurs at coordinates (i, j). Then A′ has
determinant in {−1, 0, 1} if and only if the matrix B, formed by
removing row i and column j has determinant in {−1, 0, 1}.

Applying this fact means that we only need to consider square
sub-matrices formed from some of the following constraints:∑

x

H†[x] =
∑
x

H∗[x] (total sum constraint)

GQj =
∑
i∈Xj

H†[i] for j = 1, . . . , ng

GQi =
∑

j : i∈Yj

Fij for i = 1, . . . , ng

CBj =
∑

i : i∈Yj

Fij for j = 1, . . . , nc

Applying this fact again to the CBj , we can drop constraints
of the last type above so that we only need to consider square
submatrices formed from:∑

x

H†[x] =
∑
x

H∗[x] (total sum constraint)

GQj =
∑
i∈Xj

H†[i] for j = 1, . . . , ng

GQi =
∑

j : i∈Yj

Fij for i = 1, . . . , ng

Applying this fact recursively again, we can drop constraints of
the third type above (because of the Fij variables, each such vari-
able appears in just one equation) and then the second type above
(because now the fact would apply to the GQj variables).Now we
are down to one constraint with coeffeicients being −1, 0, or 1
then any square submatrix has determinant −1, 0, 1 and so we
are done.

I. PROOF OF THEOREM 6
Proof. This proof is virtually the same as the proof of Theo-

rem 4, applied to each child.

J. PROOF OF THEOREM 7
Proof. This proof is virtually the same as the proof of Theo-

rem 5.

K. PROOF OF THEOREM 8
Proof. Clearly C†p is a necessary set of implied constraints. To

show that it is sufficient, suppose H̃p satisfies those constraints.

Since Cp ⊆ C†p then H̃p is extendable to histograms H̃τ1 , . . . , H̃τk
that satisfy Cτ1 , . . . , Cτk , respectively. Since H̃τ1 , . . . , H̃τk is es-

sentially equivalent to extending H̃p with a location attribute, it

is clear that for cells in H̃p that are 0, the corresponding cells in

each of the H̃τi is also 0, which means that C†p is then sufficient
as well.

Note that if the implied constraints Cp cause the TopDown
algorithm to solve TUM problems, then these new implied con-

straints C†p will also cause the TopDown algorithm to solve TUM
problems as these constraints add equations with only 1 variable
in each row.

L. INVARIANTS AND STRUCTURAL ZE-
ROS

The Pl94-171 dataset is too large to create in memory
Invariants for PL94-171:

1. Number of housing units in each block is invariant. Equiv-
alent to upper bounds on number of householders.

2. Number of occupied group quarters by major type (7 lev-
els) is invariant. Equivalent to lower bounds on number of
people with GQ attributes in persons table

3. Population of each state is invariant

Invariants for DHC:

1. Number of housing units in each block is invariant. Equiv-
alent to upper bounds on number of householders.

2. Number of occupied group quarters by detailed type (29
levels) by single-sex status (3 levels) is invariant. Equivalent
to lower bounds on number of people with certain sex and
GQ attribute combinations in persons table

3. Population of each state is invariant

structural zeros

1. Number of householders ≥ number of spouses and unmar-
ried partners

2. Number of householders ≤ 2 times number of parents of
householder

3. Number of householders ≤ 4 times number of grandparents
of householder

4. children of householder must have certain age gap with house-
holder

5. Householder age must be at least 15

6. Parents of householder must have a certain age gap with
householder

7. grandparents of householder must have a certain age gap
with householder

8. Some GQ are single sex or co-ed

9. Some GQ have upper and lower bounds on age.

Each invariant specifies a collection of cells (the sum of counts
in those cells is given the upper/lower/equality bound in the in-
variant).

Structural zeros also specify a collection of cells (each cell is 0,
or equivalently the sum of counts in those cells is 0).

The main mathematical distinction between structural zeros
and invariants is that (a) most importantly, structural zeros are
independent of geography while the bounds in the invariants de-
pend on geography and (b) less importantly structural zeros are
equality constraints with 0 (so there is no leeway in setting val-
ues in cells specified by structural zeros). This is the source of
difficulty.

Given that we have a table T1 that we want to extend to table
T2 by adding columns, what are the implied constraints on T1.

Some constraints on T2 are irrelevant when creating T1.
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