
Adaptive Internet Interactive Team Video

Dan Phung1 Giuseppe Valetto1,2 Gail Kaiser1

1Computer Science Department 2Telecom Italia Lab
Columbia University Turin, Italy

New York City, New York

{phung, valetto, kaiser}@cs.columbia.edu

For submission to ICWL 2005 February 22, 2005.

Abstract

The increasing popularity of distance learning and online courses has

highlighted the lack of collaborative tools for student groups. In addition,

the introduction of lecture videos into the online curriculum has drawn

attention to the disparity in the network resources used by students. We

present an e-Learning architecture and adaptation model called AI2TV

(Adaptive Internet Interactive Team Video), a system that allows bor-

derless, virtual students, possibly some or all disadvantaged in network

resources, to collaboratively view a video in synchrony. AI2TV upholds

the invariant that each student will view semantically equivalent content

at all times. Video player actions, like play, pause and stop, can be ini-

tiated by any of the students and the results of those actions are seen by

all the other students. These features allow group members to review a

lecture video in tandem to facilitate the learning process. We show in

experimental trials that our system can successfully synchronize video for

distributed students while, at the same time, optimizing the video quality

given actual (fluctuating) bandwidth by adaptively adjusting the quality

level for each student.

Keywords: E-Learning Architectures, Borderless Education, Virtual

University

1



1 Introduction

Life-Long and distance learning programs such as the Columbia Video Network 1

and the Stanford Center for Professional Development have evolved from fedex-

ing lecture video tapes to their off-campus students to instead streaming the

videos over the Web. The lectures might be delivered “live”, but are more fre-

quently post-processed and packaged for students to watch (and re-watch) at

their convenience. This introduces the possibility of forming “study groups”

among students who can view the lecture videos together and pause, rewind, or

fast-forward the video to discussion points, thus approximating the pedagogi-

cally valuable discussions that occur during on-campus lectures. To that end,

we provide an e-Learning architecture that can support those virtual student

groups.

Using conventional Internet-video technology, collaborative video viewing by

multiple geographically dispersed users is not yet supported. It is particularly

challenging to support WISIWYS (what I see is what you see) when some of

the users are relatively disadvantaged with respect to bandwidth (e.g., dial-up

modems) and local computer resources (e.g., old graphics cards, small disks).

We have adopted technology (developed by others, Liu and Kender [?]) for

“semantically compressing” standard MPEG videos into sequences of still JPEG

images. This technology automatically selects the most semantically meaningful

frames to show for each time epoch, and can generate different sequences of

JPEG images for a range of different compression (bandwidth) levels. This

technology was designed with typical lecture videos in mind, so this approach

works well for taped classes; for instance, it recognizes that it is semantically

more important to see the blackboard after the instructor has finished writing,

than showing the instructor’s back as he writes the same content on the board.

The remaining technical challenges are synchronizing and adapting the down-

loading and display of the image sequences among each of the distributed stu-

dents, including support for shared video player actions such as pause. Further,

1CVN caters to non-degree continuing education students.

2



if student groups do indeed sometimes pause the videos, or rewind to a point

already available in local buffers (caches), it is desirable to take advantage of the

then-idle network connection to prefetch future images at a higher quality level.

We have developed an approach that achieves these goals using three mech-

anisms working in tandem. First, the software clocks of the video clients for

each student are synchronized using NTP [?]. This time is used for reference

within the image sequences, where each image is associated with its start and

end times relative to the beginning of the sequence. Second, the video clients

communicate with each other over a distributed publish-subscribe event bus,

which propagates video actions taken by one user in the group to all the other

users in the group. Thus any user can select a video action, not just a “leader”.

We are particularly concerned about disenfranchised user communities that

have relatively low-bandwidth over dialup, so the third and main innovation

of our research concerns optimizing the video quality according to the band-

width constraints of each user. A distributed feedback control loop dynamically

adjusts each video client’s choice of both the next image to display and also

the next image to retrieve from the semantic compression levels available. The

controller relies on sensors embedded in each client to periodically check what

image is currently displaying, whether this image is “correct” for the current

NTP time compared to what other clients are viewing, which images have al-

ready been buffered (cached) at that client, and what is the actual bandwidth

recently perceived at that client. Actuators are inserted into the video clients

to automatically tune local configuration parameters. The controller utilizes

detailed information about the image sequences available at the video server,

including image start and stop times (both the individual images and their start

and stop times tend to be different at different compression levels), but unlike

local client data, video server data is unlikely to change while the video is show-

ing. A single controller is used for all clients in the same student group, so it

can detect “skew” across multiple clients, and may reside on the video server or

on another host on the Internet.

In the next section, we further motivate the collaborative video viewing prob-

3



lem, provide background on the semantically compressed video repository, and

explain the technical difficulties of optimizing quality while synchronizing such

semantically compressed videos. The following section presents our architecture

and dynamic adaptation model, and its implementation in AI2TV (Adaptive

Interactive Internet Team Video). In the evaluation section, we describe the

criteria used to evaluate the effectiveness of our approach, and show empiri-

cal results obtained when applied to real lecture videos distributed for a recent

Columbia Video Network course. We conclude with a comparison to related

work and by summarizing our contributions.

2 Motivation and Background

Correspondence courses have been available to working adult and/or geographi-

cally remote learners for over a century, e.g., the American School in Illinois 2 has

offered high school courses since 1897, and the University of Wyoming[?] began

offering extension courses in 1892, launching a full-fledged college distance learn-

ing program in 1906. Correspondence courses have traditionally been designed

for individual students with a self-motivated learning style, studying primarily

from text materials.

An NSF Report [?] discusses how technology, from radio to television, to au-

dio and video cassettes, to audio and video conferencing, has affected distance

education. These technologies have enabled educational institutions to offer cer-

tification and degree tracks using live or pre-taped audio and/or video of regular

on-campus classroom lectures. The report states that the recent use of Inter-

net technologies, especially the Web, has “allowed both synchronous and asyn-

chronous communication among students and between faculty and students” and

has “stimulated renewed interest in distance education”. It also mentions that

“stimulating interaction among students” can help reduce dropout rates, which

it says may be higher in distance education than in traditional courses. Finally, it

cites some studies that “suggest the Web is superior to earlier distance education

2http://www.americanschoolofcorr.com/

4



technologies because it allows teachers to build collaborative and team-oriented

communities rather than either the passive classes of the conventional academy

or the individual study of traditional correspondence courses”.

Today’s equivalent of correspondence courses are often offered online through

a Web portal interface, with some for-profit schools like University of Phoenix

3 which are primarily online. Some tools such as instant messaging, applica-

tion and desktop sharing, and co-browsing [?] can facilitate the communicative

aspects of synchronous collaboration, but are not designed specifically for educa-

tional purposes. Support for synchronous collaboration remains a major concern

in courses where group work is encouraged [?], yet there are few educational

tools that allow synchronous collaboration across a group of online students [?].

However, it seems that Web-based video streaming should enable synchronous

collaboration “situated” by collaborative lecture video viewing, approximating

the experience of on-campus students physically attending the lecture and class

discussion.

Our AI2TV project aims to contribute to the area of synchronous collabo-

ration support for life-long and distance education, specifically in the context

of collaborative video viewing, to foster virtual classrooms and borderless edu-

cation. Our design is intended for small classes or small study groups within

a larger class, and reaches out to disenfranchised user communities with dial-

up level bandwidths, who still constitute a significant portion of the Internet

user community [?], to allow them to collaborate with other users that enjoy

broadband or higher bandwidth resources.

Viewing video on the Internet usually requires relatively high bandwidth re-

sources, and low-bandwidth or lossy network connections can lead to lost video

content. This is particularly a problem for group review of lecture videos, if

different members of the group miss different portions of the video or fall be-

hind to different degrees due to extensive buffering. Furthermore, disadvantages

in network and computing resources may make it difficult if not impossible –

with current Internet video technology – for some students to participate in

3http://www.phoenix.edu/

5



collaborative lecture video viewing at all.

Technically, collaborative video viewing poses a twofold problem: on the one

hand, it is mandatory to keep all users synchronized with respect to the content

they are supposed to see at any moment during play time; on the other hand,

it is important to provide each individual user with a level of quality that is

optimized with respect to the user’s available resources, which may vary during

the course of the video.

One solution to the problem of balancing the group synchronization require-

ment with the optimization of individual viewing experiences is to use videos

with cumulative layering [?], also known as scalable coding [?]. In this ap-

proach, the client video player selects a quality level appropriate for that client’s

resources from a hierarchy of several different encodings for that video. Thus a

client could receive an appropriate quality of video content while staying in sync

with the other members of the group.

We use semantic compression to produce a video with cumulative layering.

The semantic compression algorithm developed by Liu and Kender [?] reduces

a video to a set of semantically significant key frames. That tool operates on

conventional MPEG format videos and outputs sequences of JPEG frames, some

of which are displayed in figure 1. The semantic compression algorithm profiles

video frames within a sliding time window and selects key frames that have the

most semantic information with respect to that window. By increasing the size

of the window, a key frame will represent a larger time slice, which means that a

larger window size will produce less key frames as compared to a smaller window

size setting.

A conceptual diagram of a layered video produced from this semantic com-

pression is shown in figure 1. Note that the semantic compression algorithm

produces an effectively random distribution of key frames, hence the video pro-

duced by the package plays back at a variable frame rate. The variability in

the frame rate is most significant when there are pockets of relatively high fre-

quency semantic change, which result in sections in the video that demand a

higher frame rate. The variable frame rate video adds substantial complexity to

6



LEVEL 2


LEVEL 1


Video

Hierarchy


TIME


1:00


Frame 1b

Frame 1a


Frame 2


1:03
 1:10


Figure 1: Semantic Video Scenario

the bandwidth demands of the client.

In figure 1, the bottom-left in-set shows the juxtaposition of individual frames

from two different quality levels. Each frame has a representative time interval

[start:end]. For the higher level, Frame 1a represents the interval from 1:00

to 1:03, and Frame 1b represents the interval from 1:04 to 1:10. For the lower

level, Frame 2 represents the entire interval from 1:00 to 1:10. In this diagram,

Frame 2 is semantically equivalent to Frame 1a and 1b together. However, in

real JPEG frame sequences produced from the same MPEG video for different

quality levels, the start and end times of frame sets rarely match up as ideally

as in our example.

Through the use of the Liu/Kender video compression algorithm, we can

potentially provide semantically equivalent content to a group of students with

diverse resources by adjusting the compression level assigned to each client while

the students are watching the video. Thus for our purposes, synchronization of

collaborative video boils down to showing semantically equivalent frames at all

times.

To adjust the video clients in response to the changing environment, we use

7



an “autonomic” controller4, to maintain the synchronization of the group of

video clients while simultaneously fine tuning the video quality seen by each

student. The controller remains conceptually separate from the controlled video

system, employing our decentralized workflow engine, named Workflakes [?].

Said workflow coordinates the behavior of software entities, as opposed to con-

ventional human-oriented workflow systems; the use of workflow technology for

the specification and enactment of the processes coordinating software entities

was previously suggested by Wise at al. [?]. Workflakes has previously been

used in a variety of more conventional “autonomic computing” domains, where

it orchestrates the work of software actuators to achieve the fully automated dy-

namic adaptation of distributed applications [?, ?, ?]. In the context of AI2TV,

Workflakes monitors the video clients and consequently coordinates the dynamic

adjustment of the compression (quality) level currently assigned to each client.

3 Architecture and Adaptation Model

3.1 System Architecture

AI2TV involves several major components: a video server, video clients, an

autonomic controller, and a common communications infrastructure, as shown

in figure 2.

The video server provides the educational video content to the video clients

for viewing. Each lecture video is stored in the form of a hierarchy of versions,

produced by running the semantic compression tool multiple times with settings

for different compression levels. Each run produces a sequence of JPEG frames

with a corresponding frame index file. The task of the video server is simply to

provide remote download access to the collection of index files and frames over

HTTP.

The task of each video client is to acquire video frames, display them at

the correct times, and provide a set of basic video functions. Taking a func-

4The term autonomic is borrowed from IBM to mean a self-managing system that uses a
(software) feedback control loop

8



EVENT BUS
 WORKFLOW

CONTROLLER


VIDEO

SERVER


CLIENT 1
 CLIENT 3
CLIENT 2


CLIENT n


DISPLAY


BUFFER


VIDEO

FRAMES


SENSOR

DATA


WORKFLOW

DIRECTIVES


VIDEO

PLAYER

ACTIONS


Figure 2: AI2TV Architecture

tional design perspective, the client is composed of four major modules: a time

controller, video display, video buffer that feeds the display, and a manager for

fetching frames into the buffer.

The time controller’s task is to ensure that a common video clock is main-

tained across clients. It relies on NTP to synchronize the system’s software

clocks, therefore ensuring a common time base from which each client can refer-

ence the video indices. Using this foundation, the task of each client is simplified

to displaying the client’s needed frame at the correct time. Since all the clients

refer to the same time base, then all the clients are showing semantically equiv-

alent frames from the same or different quality levels.

The video display renders the JPEG frames at the correct time into a win-

dow and provides a user interface for play, pause, goto and stop. When any

participant initiates such an action, all other group members receive the same

command, thus all the video actions are synchronized. Video actions are time

stamped so that clients can respond to those commands in reference to the com-

mon time base. The video display knows which frame to display by using the

current video time and display quality level to index into the frame index for

the representative frame. Before trying to render the frame, it asks the video

9



Figure 3: Conceptual Reference Architecture

buffer manager if the needed frame is available. The video display also includes

a control hook that enables external entities, like the autonomic controller, to

adjust the current display quality level.

The video manager constitutes a downloading daemon that continuously

downloads frames at a certain level into the video buffer. It keeps a hash of

the available frames and a count of the current reserve frames (frames buffered)

for each quality level. The buffer manager also includes a control hook that

enables external entities to adjust the current downloading quality level.

The purpose of the autonomic controller is to ensure that, given the syn-

chronization constraint, each client plays at its highest attainable quality level.

The controller is itself a distributed system, whose design derives from a con-

ceptual reference architecture for autonomic computing platforms proposed by

Kaiser et al. [?], which is shown in figure 3.1. The architecture provides an

end-to-end closed control loop, in which sensors attached to a generic (possibly

legacy) target system continuously collect and send streams of data to gauges.

The gauges analyze the incoming data streams and recognize adverse conditions

that need adaptation, relaying that information to controllers. The controllers

coordinate the expression and orchestration of the workflow needed to carry out

the adaptation. At the end of the loop, actuators attached to the target system

effect the needed adjustments under the supervision of the controller.

In the AI2TV case, sensors at each client monitor for currently displayed

10



frame, its quality level, the quality level currently being fetched by the manager,

the time range covered by buffer reserve frames, and the current bandwidth.

Gauges are embedded together with the controller for expediency in design and

to minimize communication latency. They receive the sensor reports from indi-

vidual clients, collect them in buckets, similar to the approach in [?], and pass

the bucket data structure to the controller’s coordination engine. A set of helper

functions tailored specifically for this application operate on this data structure

and produce triggers for the coordinator. When a trigger is raised, the coor-

dination engine enacts an adaptation scheme, basically a workflow plan, which

is executed on the end hosts by taking advantage of the hooks provided to the

actuators by the clients.

Communication among the video clients, as well as between the sensors and

actuators at the clients and the autonomic controller, is provided by a publish-

subscribe event bus. There are three kinds of events: video player actions, sensor

reports, and adaptation directives (see figure 2).

3.2 Adaptation Model

The adaptation scheme consists of two levels: a higher level data flow, and a

lower level adjustment heuristic. The former directs the flow of data through a

logical sequence to provide a formal decision process, while the latter provides

the criteria as to when to make certain adjustments.

The higher level logic is shown in figure 4. The diagram shows the task de-

composition hierarchy according to which the adaptation workflow unfolds. Note

that the evaluation of clients’ state with respect to the group (EvaluateClient)

and the issuing of adaptation directives (AdaptClient) is carried out as a set of

parallel steps. Also note that the multiplicity of those parallel steps is dynami-

cally determined via the number of entries in the clients variable, which maps

to a collection of AI2TV clients.

The adaptation scheme at the lower level falls into two categories: directives

that adjust the client in response to relatively low bandwidth situations, and

those that take advantage of relatively high bandwidth situations.

11



Figure 4: AI2TV Workflow diagram

In the situation where a client has relatively low bandwidth, the client may

not be able download the next frame at the current quality level by the time it

needs to begin displaying that frame. Then both the client and buffer quality

levels are adjusted downwards one level. If the client is already at the lowest

level (among those available from the video server), the controller will calculate

the next possible frame that most likely can be successfully retrieved before its

own start time while remaining synchronized with the rest of the group. The

client will then be directed to jump ahead to that frame.

To take advantage of relatively high bandwidth situations, the buffer manager

will start to accumulate a reserve buffer. Once the buffer reaches a threshold

value (e.g., 10 buffered frames), the controller will direct the manager to start

fetching frames at a higher quality level. Once sufficient reserve is accumulated

also at that higher level, the client is then ordered to display frames at that

quality level. If the bandwidth drops before the buffer manager can accumulate

enough frames in the higher-level reserve, the buffer manager is dropped back

down one quality level.

12



3.3 Implementation

Our system is implemented in Java. The video client uses javax.swing to

render JPEG images. The controller, Workflakes, is built on top of the open-

source Cougaar multi-agent system 5, which it extends to allow the orchestration

of distributed software agents for autonomic purposes (explained further in [?]).

We used the Little-JIL graphical workflow specification language [?] for defining

adaptation plans. We chose a freely available, content-based, publish-subscribe

event system, Siena [?], as our communication bus.

4 Evaluation

Our assessment considers the ability of AI2TV to synchronize the clients and

to optimally adjust their video quality. Our results were computed from client

configurations simulating small study groups which consisted of 1, 2, 3, and 5

clients together running a semantically summarized video for 5 minutes, with

sensors probing clients state every 5 seconds. The compression hierarchy we

employed has 5 different quality levels.

We define a baseline client against which the performance of our approach

can be compared. The baseline client’s quality level is set at the beginning of

the video and not changed thereafter, using a value we identify as the average

bandwidth per level. This value is computed by summing the total size in bytes

of all frames produced at a certain compression level and dividing by the total

video time. This value provides the bandwidth needed, on average, for the buffer

manager to download the next frame on time. We provide the baseline client

with the corresponding bandwidth for its chosen level by using a bandwidth

throttling tool shaperd6 to adjust the bandwidth between that client and the

video server. Note that using the average as the baseline does not account for

the inherent variability in video frame rate and likely fluctuations in real-world

network bandwidth, where adaptive control can make a difference.

5http://www.cougaar.org/
6http://freshmeat.net/projects/shaperd/

13



Each controller-assisted client is assigned an initial level in the compression

hierarchy and the same bandwidth as the baseline client for that hierarchy level.

For each experimental trial, we record any differences resulting from the con-

troller’s adaptation of the clients’ behavior versus the behavior of the baseline

client, with respect to synchrony and frame rate.

4.1 Evaluating Synchronization

The primary goal of our system is to provide synchronous viewing of lecture

videos to small groups of geographically dispersed students, some possibly with

relatively meager resources. Our initial experiments evaluate the level of syn-

chronization for several small groups of clients, where each group is involved

in a video session. Each client is preset at a designated level of compression

and given the average baseline bandwidth required for that compression level.

To measure the effectiveness of the synchronization, we probe the video clients

at periodic time intervals and log the frame currently being displayed. This

procedure effectively takes a series of system snapshots, which we can evaluate

for synchronization correctness. We check whether the frame being displayed

at a certain time corresponds to one of the valid frames for that time, on any

quality level. We allow an arbitrary level here because the semantic compression

algorithm ensures that all frames designated for a given time will contain seman-

tically equivalent information. We obtain a score by summing the number of

clients not showing an acceptable frame and normalizing over the total number

of clients. A score of 0 indicates a fully synchronized system.

These experiments showed a total score of 0 for all trials, meaning that all

of the clients were viewing appropriate frames when probed. Notwithstanding

the variations in the frame rate and/or occasional fluctuations in the actual

bandwidth of the clients, no frames were missed. This result demonstrates that

the chosen baseline combinations of compression levels and throttled bandwidths

do not push the clients beyond their bandwidth resource capacity.

Then we ran another set of experiments, in which the clients were assigned

more casually selected levels of starting bandwidths. Said casual selection is rep-

14



resentative of real-world situations, like receiving Internet audio or audio/video

streams, where users must choose a desired frame rate fro the transmission of the

content. The user may have been informed that she is allocated a certain band-

width level from her Internet service provider, but may actually be receiving a

significantly lower rate. The clients were assigned bandwidths one level lower

than the preset quality level. We ran this set of experiments first without the

aid of the autonomic controller and then with it. In the former case, clients with

insufficient bandwidth were stuck at the compression level originally selected,

and thus missed an average of 63% of the needed frames. In the latter case, the

same clients only missed 35% of the needed frames. Although both situations

show a significant amount of missed frames, these results provide evidence of

the benefits of the adaptive scheme implemented by the autonomic controller.

4.2 Evaluating Quality of Service

The most interesting technical innovation of the AI2TV system is our autonomic

controller approach to optimizing video quality. Here we analogously use a

scoring system relative to the baseline client’s quality level. We give a weighted

score for each level above or below the baseline quality level. The weighted score

is calculated as the ratio of the frame rate of the two levels. For example, if a

client is able to play at one level higher then the baseline, and the baseline plays

at an average n frames per second (fps) while the level higher plays at 2*n fps, the

score for playing at the higher level is 2. The weighted score is calculated between

the computed average frame rates of the chosen quality levels. Theoretically,

the baseline client should receive a score of 1. Note that we formulated this

scoring system because other scoring systems (e.g., [?, ?, ?]) measure unrelated

factors such as the synchronization between different streams (audio and video),

image resolution, or human perceived quality, and are not constrained by the

group synchronization requirement. This restriction mandates a scoring system

sensitive to the relative differences between quality hierarchies.

Our experiments show that baseline clients scored a group score of 1 (as

expected) while the controller-assisted clients scored a group score of 1.25. The

15



one-tailed t-score of this difference is 3.01, which is significant for an α value

of .005 (N=17). This result demonstrates that using the autonomic controller

enabled our system to achieve a significant positive difference in the quality

of service (QoS) aspect that relates to received frame rate. Note that the t-

score does not measure the degree of the positive difference: To demonstrate

the degree of benefit, we measure the proportion of additional frames that each

client is able to enjoy. We found that, overall, those clients received 20.4% (±

9.7, N=17) more frames than clients operating at a baseline rate.

Running the client close to or at a level higher than the average bandwidth

needed puts the client at risk for missing more frames, because the autonomic

controller is trying to push the client to a better but more resource-demanding

level. To measure whether the controller-assisted client is adversely exposed to a

higher risk of missing frames, we also count the number of missed frames during a

video session. The scoring is a simple count of the missed frames. Note that this

scoring is kept separate from the measure of the relative quality to discriminate

between levels of concern, although they both indicate QoS characteristics.

In all of our experiments, there was only one instance in which a controller-

assisted client missed some frames, in particular two consecutive frames. Upon

closer inspection, the time region during that event showed that the semantically

compressed video demanded a higher frame rate at the same time that the

network bandwidth available to that client was relatively low. The client was

able to consistently maintain a high video quality level after this epoch.

Our AI2TV system can achieve collaborative video viewing using relatively

naive NTP-based synchronization, without the autonomic controller. But in

typical real-world scenarios, network bandwidth varies over time, plus the vari-

able frame rate of semantically compressed video does not permit the client to

make an informed decision about the most appropriate quality level for the next

frames without adaptive technology akin to our controller. Our experimental

data shows that the autonomic controller makes a significant positive difference

in achieving higher QoS.

16



5 Related Work

Yin et al. [?] provide a system for an adaptive distributed multimedia sys-

tem that is based on streaming, multicast and compression technology. They

show that they can provide an improved level of QoS, but do not discuss user-

level action synchronization, and use quality degradation rather than semantic

compression to adapt to client resource constraints. Cen et al. provide a dis-

tributed real-time MPEG player that uses a software feedback loop between a

single server and a single client to adjust frame rates [?]. Their architecture

incorporates feedback logic within each video player and does not support syn-

chronization across a group of players, while the work presented here explicitly

supports the synchronization of semantically equivalent video frames across a

small group of clients.

An earlier implementation of AI2TV is described in [?]. In that version, a

collaborative virtual environment (CVE) supported a variety of team interac-

tions [?], with the optional lecture video display embedded in the wall of a CVE

“room”. Video synchronization data was piggybacked on top of the UDP peer-

to-peer communication used primarily for CVE updates, which did not work

very well due to the heavy-weight CVE burden on local resources.

Our approach to synchronization can be classified as a distributed adaptive

scheme that employs a global clock and operates in a proactive way. The most

significant difference compared to other approaches, such as the Adaptive Syn-

chronization Protocol [?], the work of Gonzalez and Adbel-Wahab [?], or that

of Liu and El Zarki[?], is that our approach is not based on the idea of play-out

delay. Instead, we take advantage of layered semantic compression coupled with

buffering to “buy more time” for clients that might not otherwise be able to

remain in sync, by putting them on a less demanding level of the compression

hierarchy.

Liu et al. provide a comprehensive summary of the mechanisms used in video

multicast for quality and fairness adaptation as well as network and coding

requirements [?]. To frame our work in that context, our current design and

17



implementation models a single-rate server adaptation scheme to each of the

clients because the video quality we provide is tailored specifically to that client’s

network resources. The focus in our work is directed towards the client-side end-

user perceived quality and synchrony, so we did not utilize the most efficient

server model. The authors believe that it would be trivial to substitute in a

simulcast server adaptation model [?].

6 Conclusion

We present an e-Learning architecture and prototype system that allows small,

geographically dispersed student groups to collaboratively view lecture videos in

synchrony. To accommodate disenfranchised users with relatively low-bandwidth,

AI2TV employs an “autonomic” (feedback loop) controller to dynamically adapt

the video quality according to each client’s network resources. We rely on a se-

mantic compression algorithm to guarantee that the semantic composition of the

simultaneously viewed video frames is equivalent for all clients. Our system dis-

tributes appropriate quality levels of video to clients, and automatically adjusts

them according to their current bandwidth resources. We have demonstrated the

advantages of this approach through experimental trials using bandwidth throt-

tling to show that our system can provide synchronization of video together with

optimized video quality to distributed student groups.

7 Acknowledgments

We would like to thank John Kender, Tiecheng Liu, and other members of the
High-Level Vision Lab for their assistance in using their lecture-video semantic
compression software. We would also like to thank other members of the Pro-
gramming Systems Lab, particularly Matias Pelenur who implemented PSL’s
Little-JIL interpreter on top of Workflakes/Cougaar and Suhit Gupta for in-
valuable commentary and ideas. Little-JIL was developed by Lee Osterweil’s
LASER lab at the University of Massachusetts, Amherst. Cougaar was devel-
oped by a DARPA-funded consortium; our main Cougaar contact was Nathan
Combs of BBN. Siena was developed by the University of Colorado, Boulder,
in Alex Wolf’s SERL lab. PSL is funded in part by National Science Foun-
dation grants CNS-0426623, CCR-0203876 and EIA-0202063, and by Microsoft
Research.

18



References

[1] The Application and Implications of Information Technologies in Postsecondary
Distance Education: An Initial Bibliography. Technical Report NSF 03-305, Na-
tional Science Foundation, Division of Science Resources Statistics, December
2002.

[2] S. Baqai, M. F. Khan, M. Woo, S. Shinkai, A. A. Khokhar, and A. Ghafoor.
Quality-based evaluation of multimedia synchronization protocols for distributed
multimedia information systems. IEEE Journal of Selected Areas in Communica-

tions, 14(7):1388–1403, 1996.

[3] L. A. Burgess and S. D. Strong. Trends in online education: Case study at
southwest missouri state university. Journal of Industrial Teacher Education,
19(3), 2003.

[4] M. Capps, B. Laddi, D. Stotts, and L. Nyland. Educational applications of multi-
client synchronization through improved web graph semantics. In 5th Interna-

tional Workshops on Enabling Technologies: Infrastructure for Collaborative En-

terprises, 1996.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

[6] A. G. Cass, Barbara Staudt Lerner, E. K. McCall, L. J. Osterweil, Stanley M.
Sutton, Jr., and A. Wise. Little-JIL/Juliette: A Process Definition Language and
Interpreter. In 22nd International Conference on Software Engineering, pages
754–757, June 2000.

[7] A. L. Corte, A. Lombardo, S. Palazzo, and G. Schembra. Control of perceived
quality of service in multimedia retrieval services: Prediction-based mechanism
vs. compensation buffers. Multimedia Systems, 6(2):102–112, 1998.

[8] S. E. Dossick and G. E. Kaiser. CHIME: A Metadata-Based Distributed Software
Development Environment. In Joint 7th European Software Engineering Confer-

ence and 7th ACM SIGSOFT International Symposium on the Foundations of

Software Engineering, pages 464–475, 1999.

[9] L. Gautier and C. Diot. Design and evaluation of mimaze, a multi-player game on
the internet. In International Conference on Multimedia Computing and Systems,
pages 233–236, 1998.

[10] A. J. Gonzalez and H. Adbel-Wahab. Lightweight stream synchronization frame-
work for multimedia collaborative applications. In 5th IEEE Symposium on Com-

puters and Communications, July 2000.

[11] S. Gupta and G. Kaiser. A Virtual Environment for Collaborative Distance Learn-
ing With Video Synchronization. In 7th IASTED International Conference on

Computers and Advanced Technology in Education, August 2004.

[12] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto. An Approach to Autono-
mizing Legacy Systems, in Workshop on Self-Healing, Adaptive and Self-Managed
Systems. In Workshop on Self-Healing, Adaptive and Self-Managed Systems, June
2002.

[13] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kinesthetics eXtreme: An Ex-
ternal Infrastructure for Monitoring Distributed Legacy Systems. In 5th Annual

International Active Middleware Workshop, June 2003.

19



[14] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Retrofitting Autonomic Capabil-
ities onto Legacy Systems. Technical Report CUCS-026-03, Columbia University
Department of Computer Science, October 2003.

[15] B. S. Lemer, E. K. McCall, A. Wise, A. G. Cass, L. J. Osterweil, and S. M. S.
Jr. Using little-jil to coordinate agents in software engineering. In Automated

Software Engineering Conference, September 2000.

[16] W. Li. Overview of the fine granularity scalability in mpeg-4 video standard.
IEEE Transactions on Circuits and Systems for Video Technology, 11(3):301–317,
March 2001.

[17] X. Li, M. H. Ammar, and S. Paul. Video multicast over the internet, April 1999.

[18] H. Liu and M. E. Zarki. A synchronization control scheme for real-time streaming
multimedia applications. In Packet Video 2003, April 2003.

[19] J. Liu, B. Li, and Y.-Q. Zhang. Adaptive video multicast over the internet. IEEE

Multimedia, 10(1):22–33, January/March 2003.

[20] T. Liu and J. R. Kender. Time-constrained dynamic semantic compression for
video indexing and interactive searching. In IEEE Conference on Computer Vision

and Pattern Recognition, volume 2, pages 531–538, 2001.

[21] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast.
In ACM SIGCOMM, volume 26,4, pages 117–130, New York, AUG 1996. ACM
Press.

[22] J. Miller, C. Ditzler, and J. Lamb. Reviving a Print-based Correspondence Study
Program In the Wake of Online Education. In American Association for Collegiate

Independent Study: Distance Learning: Pioneering the Future, October 2003.

[23] D. L. Mills. Network time protocol. RFC 958, 1985.

[24] M. Richtel. In a Fast-Moving Web World, Some Prefer the Dial-Up Lane. The

New York Times, April 19 2004.

[25] K. Rothermel and T. Helbig. An Adaptive Protocol for Synchronizing Media
Streams. Multimedia Systems, 5:324–336, 1997.

[26] G. Valetto. Orchestrating the Dynamic Adaptation of Distributed Software with

Process Technology. PhD thesis, Columbia University, April 2004.

[27] G. Valetto and G. Kaiser. Using Process Technology to Control and Coordinate
Software Adaptation. In International Conference on Software Engineering, May
2003.

[28] J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee, C. Pu, D. Steere,
and L. Yu. A Player for Adaptive MPEG Video Streaming Over The Internet. In
26th Applied Imagery Pattern Recognition Workshop. SPIE, October 1997.

[29] Y. Wang, J. Ostermann, and Y.-Q. Zhang. Video Processing and Communications.
Prentice Hall, 2002.

[30] J. G. Wells. Effects of an on-line computer-mediated communication course. Jour-

nal of Industrial Technology, 37(3), 2000.

[31] H. Yin, C. Lin, J.-J. Zhuang, and Q. Ni. An adaptive distance learning system
based on media streaming. In International Conference on Web-Based Learning,
pages 184–192, 2004.

20


